
Introduction

Assume the following convention for the propagator term in the fields ex-
pressions:

ej(ωt−k·r), e−jk·r (1)

where k is the wavevector and r is the position (it will be more explicitly
considered in a while). Fields are all implicitly assumed as sinusoidal: t
represents time and ω the angular frequency of the sinusoid: this time de-
pendency is considered as granted and the term ejωt is omitted to ease the
computations, hence the propagators will always be written in the second
form shown in (1). The actual value of a field component can be obtained
from its expression Ae−jk·r (called phasor) as

E(x, y, z, t) = Re
{
Ae−jk·r · ejωt

}
= Re {A} cos (ωt− k · r) (2)

An Electro-magnetic field configuration inside a dielectric slab is consid-
ered a mode if it meets the following requirements:

• It is a valid Maxwell’s equations solution in the three-dimensional
space1, and it satisfies the boundary conditions imposed by the di-
electric slab structure.

• Being a wave inside the core, it impinges on each of the interfaces
towards the cover with an incidence angle equal to or greater than the
limit-angle θ ≥ θ`, so always experiencing a total internal reflection:
this allows the field to keep being confined in the core.

1Unlike the metallic waveguides, this solution must be valid not only inside the guide,
but also outside. Dielectric waveguides are open waveguides: there is no hard shield
between their inside and their outside.
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• It is self-consistent: after two consecutive reflections, its phase is
incremented by a multiple of 2π. This guarantees that the field keeps
a uniform magnitude along the propagation direction. If this direction
is z, the z-dependence of the field expression should only be e−jkzz: it
can immediately be verified that, this way, the value of z does not alter
the magnitude of the field, being |e−jkzz| = 1, ∀z ∈ R.

Oblique incidence of a plane wave on a surface

An Electro-magnetic wave is generally able to cross the surface between two
different dielectric materials. Several phenomena are related to this event:
reflection, transmission, refraction. Their analysis shows how and when a
couple of different dielectric materials constitutes a waveguide.

The most trivial example of a wave which encounters the surface separat-
ing two different dielectric materials involves a plane wave and its wavevector
k, when it is perfectly orthogonal to the surface (normal incidence).

A more complex – but more general – case occurs when the wavevector k
has a different angle and its incidence is therefore not normal to the surface.
Let all the three-dimensional half space z < 0 be filled with a dielectric
medium whose permittivity is ε1; let the remaining space z ≥ 0 be filled
with a medium whose permittivity is ε2 < ε1. The plane separating the two
dielectric media is z = 0.

The plane containing the vector normal to the surface z = 0 and the
wavevector k is called incidence plane. In this particular problem, the in-
cidence plane is itself orthogonal to the separation plane z = 0. With the
chosen system of coordinates, shown in Figure 1, this coincides with the (x, z)
plane.

The Electric field can lie on this plane (parallel polarization), or it can
be orthogonal to this plane (perpendicular polarization), or it can be written
as a linear combination of these two cases. All the essential observations can
be made already with the first case only, and it will be the only one shown
here. The following approach is the same as in David M. Pozar. Microwave
engineering. Wiley, Hoboken (NJ), 3rd edition, 2005 (where also the simpler
normal incidence case and the perpendicular polarization case are shown).

An Electro-magnetic field Ei,Hi is directed from medium 1 towards the
separation surface z = 0 and it constitutes a plane wave: this implies that
the wavefronts are planes of infinite extension. A finite portion of them is
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depicted in Figure 2. Wavevector k1 is always normal to these planes. It
should be recalled in fact that, when dealing with plane waves, the triad of
vectors Ei,Hi,k1 follow the right-hand rule: they are such that Ei ×Hi is
directed along k1.

The same considerations apply for the field Et,Ht in medium 2 with
wavevector k2, and for the reflected field Er,Hr in medium 1, whose wavevec-
tor has the same magnitude, but a different direction, with respect to the
initial wavevector k1.

In this problem, the incident Electro-magnetic field Ei,Hi is a known
quantity, as well as its wave vector k1 and the angle of incidence θi.

Note that the angles θi, θr, θt are by convention the angles between the k
vector direction of each wave and the direction of the vector uz, which is the
normal vector to the surface z = 0 (the interface between the two media).

The incident Electro-magnetic field in Figure 1 is evaluated at a general
position r, along its path towards the interface plane.

The vector r is used to identify a specific point in space with (in this case)
coordinates (x, y, z):

r = xux + yuy + zuz (3)

where ux,uy,uz are the unit vectors along the three-dimensional axes direc-
tions. To determine the dependencies of the propagators of the wave with
respect to the variables x, y, z:

k1 · r = k
(1)
x x+ k

(1)
y y + k

(1)
z z

k2 · r = k
(2)
x x+ k

(2)
y y + k

(2)
z z

(4)

Being (x, z) the incidence plane, the wave does not propagate along y:

the related components k
(1)
y and k

(2)
y of the wavevectors k1 and k2 are 0.

Observing Figure 1 and the value of the angle of incidence θi, upon geometric
considerations the following identities can be derived observing the right
triangles involving k1 and its components k

(1)
x , k

(1)
z :

k
(1)
x = k1 sin θi
k

(1)
z = k1 cos θi

(5)

where k1 = |k1|. So, the first equation in (4) becomes:
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Figure 1: Incidence of a plane wave on the surface between two different
dielectric media.
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k1 · r = k1x sin θi + k1z cos θi (6)

The same computations can be applied to the wavevector in the medium
2:

k
(2)
x = k2 sin θt
k

(2)
z = k2 cos θt

(7)

with k2 = |k2| and the second equation in (4) is:

k2 · r = k2x sin θt + k2z cos θt (8)

Evaluated in position r, the incident Electric and Magnetic fields are:

Ei(r) = E0 cos θie
−jk1x sin θie−jk1z cos θiux − E0 sin θie

−jk1x sin θie−jk1z cos θiuz

Hi(r) =
E0

η1

e−jk1x sin θie−jk1z cos θiuy

(9)

The interface represents a discontinuity in the path of the incident field
Ei,Hi. As already pointed out, these fields are known, as well as the angle
of incidence θi.

In the most general case, it may happen that a fraction of the incident
field is reflected back in the medium 1 and another fraction of the incident
field is able to go through the medium 2: moreover, both their paths can
have angles (with respect to the z axis) which differ from θi.

Considering the Electric field only (then, the Magnetic field can be derived
from its value), in general, if E0 is the magnitude of the incident field, ΓE0

conventionally represents the fraction of field which is reflected back to the
medium 1; TE0 represents the portion of field that crosses the interface. Both
the reflection and the transmission can lead to phase shifts, so Γ and T are
in general complex quantities.

Remembering that Er,Hr propagates backwards in the medium 1, and
that they must still follow the right-hand rule together with the new wavevec-
tor k1, the reflected Electro-magnetic field can be written as:
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Er(r) = E0Γ cos θre
−jk1x sin θre−jk1z cos θrux + E0Γ sin θre

−jk1x sin θre−jk1z cos θruz

Hr(r) = −E0Γ

η1

e−jk1x sin θre−jk1z cos θruy

(10)

Unlike the incident wave, the E field has a positive x component and H
is entering the paper in Figure 1. The orientation of Er,Hr and k1 is more
explicitly shown is Figures 2, 3 and 4.

The portion of Electro-magnetic field which can cross the interface and
propagate inside the medium 2 can be expressed as:

Et(r) = E0T cos θte
−jk2x sin θte−jk2z cos θtux − E0T sin θte

−jk2x sin θte−jk2z cos θtuz

Ht(r) =
E0T

η2

e−jk2x sin θte−jk2z cos θtuy

(11)

The magnitude of the wavevector k1 depends on the medium 1 and on
the frequency ω of the field:

|k1| = k1 = ω
√
µ1ε1 = ωn1

√
µ0ε0 (12)

Where it has been assumed that n1 =
√
εr1 is the refractive index of

medium 1 and µ1 = µ0 is the same as vacuum. Also, the wave impedance in
medium 1 is:

η1 =

√
µ0

ε1

=
1

n1

η0 (13)

As regards medium 2:

|k2| = k2 = ω
√
µ2ε2 = ωn2

√
µ0ε0 (14)

assuming n2 =
√
εr2 and µ2 = µ0; also
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Figure 2: Incidence of a plane wave on the surface between two different
dielectric media, with the perspective of Figure 1, in three-dimensional space.
The (x, z) plane, which is the plane of incidence, has been highlighted in gray.
The wavefronts of plane waves are depicted as green planes. The half-space
z < 0, which hosts the medium 1, is filled with a light yellow color.
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η2 =

√
µ0

ε2

=
1

n2

η0 (15)

Observing the field expressions (9), (10) and (11), and the quantities they
involve, the unknown values are Γ, T, θr, θt. Some equations will be needed
to determine them.

Across the interface between two dielectric materials, the tangential Elec-
tric and Magnetic field must be continuous.

The field x and y components are subjected to reflection, refraction and
they must satisfy a continuity equation. The field z components are only
subjected to reflection and refraction.

Only the x-component of the field E is tangent to the z = 0 plane; on the
other hand, all the field H is tangent to the same plane, being always and
only along y. Then, the following two continuity conditions must be verified:

[Ei(r)]x + [Er(r)]x = [Et(r)]x

Hi(r) + Hr(r) = Ht(r)
(16)

for all the points r belonging to the (x, y) plane, which has equation z = 0.
Summing the x-components of the E fields in (9) and (10), and equalling

the result to the x component in (11), remembering that z = 0:

E0 cos θie
−jk1x sin θi + E0Γ cos θre

−jk1x sin θr = E0T cos θte
−jk2x sin θt

cos θie
−jk1x sin θi + Γ cos θre

−jk1x sin θr = T cos θte
−jk2x sin θt

(17)

Summing the Magnetic fields in (9) and (10), and equalling the result to
the one in (11), remembering that z = 0:

E0

η1

e−jk1x sin θi − E0Γ

η1

e−jk1x sin θr =
E0T

η2

e−jk2x sin θt

1

η1

e−jk1x sin θi − Γ

η1

e−jk1x sin θr =
T

η2

e−jk2x sin θt

(18)

In order to determine the values of the 4 unknowns Γ, T, θr, θt, more than
two equations are required. However, (17) and (18) must hold at the same
time for every real value of x: therefore, each of them is not a single equation,
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Figure 3: Incidence of a plane wave on the surface between two different
dielectric media, in three-dimensional space, seen from medium 1 side and
perspective.
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but rather a system of infinite equations, one for each value of x. Of course,
only some of these equations will be significant and linearly independent.

Evaluating (17) and (18) as x = 0:

cos θi + Γ cos θr = T cos θt (19)

1

η1

− Γ

η1

=
T

η2

(20)

Substituting (19) in the Right Hand Side of equation (17):

cos θie
−jk1x sin θi + Γ cos θre

−jk1x sin θr = (cos θi + Γ cos θr) e
−jk2x sin θt

cos θie
−jk1x sin θi + Γ cos θre

−jk1x sin θr = cos θie
−jk2x sin θt + Γ cos θre

−jk2x sin θt

(21)

By side-by-side comparison, if (21) and (17) must be verified at the same
time (the latter for x = 0, the former for any other x 6= 0),

e−jk1x sin θi = e−jk2x sin θt

e−jk1x sin θr = e−jk2x sin θt

⇒

 k1 sin θi = k2 sin θt

k1 sin θr = k2 sin θt
(22)

that is  n1 sin θi = n2 sin θt

n1 sin θr = n2 sin θt
(23)

This leads to two conclusions:

1. The first equation in system (23) is Snell’s law of refraction.

2. Observing that the equations in (23) have the same Right Hand Sides,
it follows that

n1 sin θi = n1 sin θr → θi = θr (24)
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Figure 4: Incidence of a plane wave on the surface between two different
dielectric media, in three-dimensional space, seen from medium 2 side and
perspective.
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Being 0 ≤ θi,r ≤ π/2, the equality of the sines of the two angles also
implies the equality of the angles themselves.

Therefore, the angle of the reflected wavevector2 is equal to the angle
of incidence.

These conditions together are called Snell’s laws of refraction and
reflection. They are not defined a priori : they are instead obtained by
imposing that the tangent Electric and Magnetic fields do not vary while
crossing the interface between the two media. They are due to this constraint.

The condition (17) is not a single equation: it is a much harder constraint,
involving every value of x. Its consequences determine the features of both
the reflected and the transmitted wave across the surface.

The constraint of Snell’s law is not only about the angles and refractive
indexes. Multiplying by k0 both sides of first equation in (23), the following
equality is also obtained:

n1k0 sin θi = n2k0 sin θt

k1 sin θi = k2 sin θt
(25)

A comparison with relations (5) and (7) shows that (25) imposes:

k
(1)
x = k1 sin θi = k

(2)
x = k2 sin θt

k
(1)
x = k

(2)
x

(26)

Despite the crossing of the interface in z = 0 and despite the abrupt
transition from medium 1 to 2, the x component of the wavevector does not
vary. The wave is forced to keep the same velocity along x regardless of the
medium change. The presence of an interface and the subsequent reflections
and/or refractions do not affect the longitudinal propagation of the wave.
This is a not obvious and remarkable result.

2With respect to the z axis (orthogonal to the interface plane z = 0).
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Note

All the three wavevectors in Figure 1 have been chosen to explic-
itly show the same kx. In the subsequent Figures 2, 3 and 4, it has
not been possible, instead: it has been preferred to keep a clear
appearance of all the waves. The θt angles in all the four Figures
are smaller than θi, which would correspond to ε1 < ε2. Again,
it is not the condition used for these computations: however, a
greater θt would have depicted a too steep k2 vector, generating
less comprehensible pictures.
With the system of coordinates that will be used fo dielectric
waveguides, the role of the current kx will be represented by kz.
Its constant value for both the medium 1 and medium 2 leads to
the equations that define a mode.

Two out of the four unknowns have been determined so far: θr and θt.
Recalling (19) and (20), they constitute a system of two equations as

regards the unknowns Γ and T :
cos θi + Γ cos θr

cos θt
= T

η2

η1

(1− Γ) = T
(27)

Equating the Left Hand Sides of both the equations in (27):

cos θi + Γ cos θr
cos θt

=
η2

η1

(1− Γ)

η2

η1

− η2

η1

Γ =
cos θi
cos θt

+ Γ
cos θr
cos θt

Γ

(
cos θr
cos θt

+
η2

η1

)
=
η2

η1

− cos θi
cos θt

Γ

(
η1 cos θr + η2 cos θt

η1 cos θt

)
=
η2 cos θt − η1 cos θi

η1 cos θt

Γ =
η2 cos θt − η1 cos θi
η1 cos θr + η2 cos θt

(28)

Observing that θr = θi:
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Γ =
η2 cos θt − η1 cos θi
η2 cos θt + η1 cos θi

(29)

Substituting back the value (28) of Γ in the second equation of system
(27):

η2

η1

(
1− η2 cos θt − η1 cos θi

η2 cos θt + η1 cos θi

)
= T

η2

η1

(
η2 cos θt + η1 cos θi − η2 cos θt + η1 cos θi

η2 cos θt + η1 cos θi

)
= T

(30)

T =
2η2 cos θi

η2 cos θt + η1 cos θi
(31)

Note that, in general, Γ and/or T can be complex, due to phase shifts
which may be introduced during the reflection and refraction processes. Ex-
pressions (29) and (31) turn out to be a generalization of the already men-
tioned elementary case of normal incidence. The relations for that case can
be re-obtained by equalling θi, θr and θt to zero (29) and (31):

Γ =
η2 − η1

η2 + η1

T =
2η2

η2 + η1

(32)

Also, the relation

1 + Γ = T (33)

holds. When instead θi 6= 0, the more general (29) and (31) must be used
instead of the above relations (32): moreover, (20) must replace (33).

All the previously mentioned unknowns Γ, T, θr, θt have been determined.
It is now useful to consider some extreme cases.

The reflection coefficient Γ vanishes if the numerator of (29) is 0. If this
condition can occur, the corresponding value of the incidence angle θi must
be determined. First, the numerator should be rewritten only in terms of θi,
as it is the only desired variable. Recalling Snell’s law, first equation in (23):
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n1 sin θi = n2 sin θt

sin θt =
n1

n2

sin θi

cos θt =
√

1− sin2 θt =

√
1− n2

1

n2
2

sin2 θi

(34)

Rewriting the numerator of (29) equal to 0, substituting (34) and remem-

bering that cosα =
√

1− sin2 α:

η2 cos θt − η1 cos θi = 0√
µ0

ε0

1
√
εr2

cos θt −
√
µ0

ε0

1
√
εr1

cos θi

1
√
εr2

cos θt −
1
√
εr1

cos θi = 0

(35)

1

n2

cos θt −
1

n1

cos θi = 0

n1 cos θt − n2 cos θi = 0

(36)

n1

√
1− n2

1

n2
2

sin2 θi = n2

√
1− sin2 θi

n2
1

(
1− n2

1

n2
2

sin2 θi

)
= n2

2(1− sin2 θi)

n2
1 − n2

1

n2
1

n2
2

sin2 θi = n2
2 − n2

2 sin2 θi

(37)

The sin θi term must now be isolated:

n2
1 − n2

2 =

(
n2

1

n2
1

n2
2

− n2
2

)
sin2 θi

(n1 + n2)(n1 − n2) =

(
n4

1 − n4
2

n2
2

)
sin2 θi

(38)
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(n1 + n2)(n1 − n2) =
(n2

1 − n2
2)(n2

1 + n2
2)

n2
2

sin2 θi

(n1 + n2)(n1 − n2) =
(n1 + n2)(n1 − n2)(n2

1 + n2
2)

n2
2

sin2 θi

(39)

1 =

(
n2

1 + n2
2

n2
2

)
sin2 θi

n2
2

n2
1 + n2

2

= sin2 θi

(40)

The involved values of θi are between 0 and π/2, so the sine is always
positive and its square root can be taken without ambiguity. The final result
can be provided in several alternative ways:

sin θi =

√
n2

2

n2
1 + n2

2

(41)

Multiplying numerator and denominator inside the square root by ε0:

sin θi =

√
ε2

ε1 + ε2

θi = arcsin

(√
ε2

ε1 + ε2

)

θi = arcsin

 1√
ε1 + ε2

ε2

 = arcsin

 1√
1 +

ε1

ε2

 = θB

(42)

As specified in the beginning, here the whole Electric field is contained
in the incidence plane (parallel polarization, or TM wave). In this problem,
a value for the angle θi exists such that the reflection coefficient vanishes: a
wave impinging on the interface with this angle will experience total trans-
mission from medium 1 to medium 2 and no reflection. This specific value
of θi is called Brewster’s angle and it is usually referred to as θB. Its value
depends on the ratio ε1/ε2 between the dielectric constants of the two media.

Brewster’s angle is a significant value, which causes also other features to
be observed in the wave. However, they will not be considered here, as they
are not related to the dielectric waveguides.
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When the Electric field is orthogonal to the incidence plane (perpendic-
ular polarization, or TE wave), it can be verified that there is no value for
the angle θi that vanishes the reflection coefficient, so in that case Brewster’s
angle does not exist.
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Dielectric slab waveguides

Planar dielectric waveguides come in various flavours, according to the avail-
able materials and the circuits where are embedded.

They are always composed, however, by a number n of layers. The most
important of them is the guiding layer: the Electro-magnetic field must be
bounded as much as possible inside it. It has the highest refractive index,
n1. The other layers have lower refractive indexes.

Symmetrical slab waveguides

The simplest kind of dielectric slab is symmetrical with respect to the (y, z)-
plane, which has equation x = 0. It is composed by only two materials:
a cover (sometimes alternatively called cladding, following the fiber optics
terminology) with refractive index n2, and a core, with refractive index n1 >
n2.

Note that this structure has an infinite extension along the y-axis. The
z-axis enters the page, according to the right-hand rule. The permittivity
ε = ε(x) is not a constant through the vertical direction x. Its variation
shows how the two types of materials fill the whole three-dimensional space:

ε(x) =


ε2, x > a
ε1, a ≤ x ≤ −a
ε2, x < −a

=

{
ε1, |x| ≤ a
ε2, |x| > a

(43)

Correspondingly, the refractive index n = n(x) =
√
εr(x) =

√
ε(x)/ε0 is:

n(x) =

{
n1, |x| ≤ a
n2, |x| > a

(44)
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Figure 5: Structure of a symmetrical dielectric slab.
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This structure can be trivially realized by a slab of a specific material as
core with some n1 > 1, and the air itself as cover, with n2 = 1.

Such a waveguide is uniform with respect to both the y and the z direc-
tion: along each of them, fields are allowed to be uniform or propagating.

The objective of a waveguide is the propagation of a signal along a spe-
cific direction: then, uniform fields along both y and z would not meet this
requirement3. A field which is (a) uniform along one of these directions, and
(b) propagating along the other, will instead be obtained. The choice (a)
significantly reduces the complexity of the problem: the whole structure will
appear as bi-dimensional, with an eased computation4. The choice (b) will
allow for the propagation of a signal5.

The following hypotheses will be applied:

1.
∂

∂y
= 0 for all the field quantities. The field components can then

be represented as E(x, y, z) = E(x, z) or H(x, y, z) = H(x, z). The y
direction is chosen as the uniform direction.

2. The field components have separable dependencies with respect to the
remaining variables x and z, such that E(x, z) = e(x)f(z), and f(z)
should represent a propagator : f(z) = e−jkzz, kz ∈ R. This is the only
dependency on z allowing for a propagating field. The z direction is
therefore chosen as the propagation direction.

3. n1 > n2.

4. Absence of field sources6.

3Uniform fields along the whole (y, z) plane would be appropriate for a capacitor, not
a waveguide.

4While such a dielectric slab is unrealisable (like the parallel-plate waveguide), it shows
the major features of this whole family of waveguides in a simple way.

5Propagation can obviously take place also along a generic direction with both a y and
a z component, but it wouldn’t ease the computations. The coordinate reference system
can always be chosen such that the direction of propagation is one of them, without loosing
generality.

6The fields will be related to a region of space far away from their sources: here, it is
not important the generation of the fields, but only the fields themselves, in a steady-state
configuration.
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5. Both the core and the cover media are linear, isotropic7 and homoge-
neous8 media.

The reference Maxwell equations to be solved are then:
∇ ·D = 0
∇ ·B = 0
∇× E = −jωµH
∇×H = jωεE

(45)

From the first equation ∇ · D = 0, using linearity and isotropy of the
media,

∇ · (εE) = 0
ε∇ · E = 0
∇ · E = 0

(46)

being always ε 6= 09. Last equation in (46) lets some useful expressions to be
obtained, expanding the ∇ operator:

∂

∂x
Ex(x, z) +

∂

∂y
Ey(x, z) +

∂

∂z
Ez(x, z) = 0 (47)

Remembering the hypotheses 1 and 2,

∂

∂y
Ey(x, z) = 0

∂

∂z
= −jkz

(48)

The operator of partial derivative with respect to z simply becomes a scalar
multiplication to −jkz, due to the form of f(z) = e−jkzz which is common to
all the field components. So, (47) becomes

7If the medium is linear, D = [ε]E, being [ε] a tensor. If the medium is also isotropic,
then D = εE, being ε a scalar quantity.

8Composed by a uniform material.
9The permittivity is a property of the material: its lowest value is about vacuum,

ε0 ' 8.8541878 · 10−12 F/m.
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∂

∂x
Ex(x, z)− jkzEz(x, z) = 0

∂

∂x
Ex(x, z) = jkzEz(x, z)

(49)

Similarly, from the 2nd Maxwell equation10:

∇ · (µH) = 0

∇ ·H = 0

∂

∂x
Hx(x, z) = jkzHz(x, z)

(50)

The 3rd Maxwell equations expands as follows:

10Also µ is a property of the medium and it is always not zero.
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∇× E = det

∣∣∣∣∣∣∣∣∣∣∣
ux uy uz

∂

∂x

∂

∂y

∂

∂z

Ex(x, z) Ey(x, z) Ez(x, z)

∣∣∣∣∣∣∣∣∣∣∣
=

= ux

(
∂

∂y
Ez(x, z)−

∂

∂z
Ey(x, z)

)
+ uy

(
∂

∂z
Ex(x, z)−

∂

∂x
Ez(x, z)

)
+

+uz

(
∂

∂x
Ey(x, z)−

∂

∂y
Ex(x, z)

)
= −jωµH

(51)

Remembering that all the members with a partial derivatives with respect
to y are zero, equation (51) becomes:

−ux
∂

∂z
Ey(x, z) + uy

(
∂

∂z
Ex(x, z)−

∂

∂x
Ez(x, z)

)
+ uz

∂

∂x
Ey(x, z) =

= −jωµH

(52)

Being (52) a vector equation, it represents three single equations, along
the three directions ux, uy, uz of the three-dimensional space. They are,
respectively:

This work is licensed under a Creative
Commons “Attribution-ShareAlike 4.0
International” license.

24

The Curling Team

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://thecurlingteam.github.io


− ∂

∂z
Ey(x, z) = −jωµHx(x, z)

∂

∂z
Ey(x, z) = jωµHx(x, z)

−jkzEy(x, z) = jωµHx(x, z)

kz Ey(x, z) = −ωµ Hx(x, z)

(53)

∂

∂z
Ex(x, z)−

∂

∂x
Ez(x, z) = −jωµHy(x, z)

−jkzEx(x, z)−
∂

∂x
Ez(x, z) = −jωµHy(x, z)

jkz Ex(x, z) +
∂

∂x
Ez(x, z) = jωµ Hy(x, y)

(54)

∂

∂x
Ey(x, z) = −jωµ Hz(x, z) (55)

Applying the same procedure for the 4th Maxwell equation,
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∇×H = det

∣∣∣∣∣∣∣∣∣∣∣
ux uy uz

∂

∂x

∂

∂y

∂

∂z

Hx(x, z) Hy(x, z) Hz(x, z)

∣∣∣∣∣∣∣∣∣∣∣
=

= ux

(
∂

∂y
Hz(x, z)−

∂

∂z
Hy(x, z)

)
+ uy

(
∂

∂z
Hx(x, z)−

∂

∂x
Hz(x, z)

)
+

+uz

(
∂

∂x
Hy(x, z)−

∂

∂y
Hx(x, z)

)
= jωεE

(56)

kz Hy(x, z) = ωε Ex(x, z) (57)

jkz Hx(x, z) +
∂

∂x
Hz(x, z) = −jωε Ey(x, y) (58)

∂

∂x
Hy(x, z) = jωε Ez(x, z) (59)

The relations (53), (54), (55), (57), (58), (59) have been obtained only
with the very general and simple hypotheses 1-5.

After inspection of the field components involved in each of the 6 equa-
tions, it is possible to identify two completely independent sets of equations:

• One set is composed by (53), (55) and (58) and it involves only the
field components
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Ey(x, z) , Hx(x, z) , Hz(x, z) (60)

• Equations (54), (57) and (59) represent another set, with the field com-
ponents

Hy(x, z) , Ex(x, z) , Ez(x, z) (61)

The value of the components Ey(x, z), Hx(x, z) and Hz(x, z) does not
depend on the remaining Hy(x, z), Ex(x, z) and Ez(x, z): therefore, a field
with only the first three components can exist with or without the other ones,
and vice-versa. These two separate sets are independent from each other.

The curl operator is now applied to both sides of the 3rd and 4th Maxwell
equations:

∇×∇× E = −jωµ∇×H
∇×∇×H = jωε∇× E

(62)

Given a vector field A, the following relation holds:

∇×∇×A = ∇ (∇ ·A)−∇2A (63)

Recalling that ∇ · E = 0 and ∇ ·H = 0, equations (62) become:

∇×∇× E = −∇2E = −jωµ∇×H
∇×∇×H = −∇2H = jωε∇× E
∇2E = jωµ∇×H
∇2H = −jωε∇× E

(64)

∇ × E in the Right Hand Side of the last equation is given by the 3rd
Maxwell equation, as well as ∇ ×H is given by the 4th one. They can be
substituted:

∇2E = jωµ (jωεE)
∇2H = −jωε (−jωµH)
∇2E = −ω2µεE
∇2H = −ω2µεH

(65)

∇2E + ω2µεE = 0
∇2H + ω2µεH = 0

(66)
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Two Helmholtz equations, which are wave equations, have been obtained:
one for the Electric field and one for the Magnetic field. This allows the
existence of waves in the space represented in Figure 5.

Equations (66) are actually a synthesis of 6 scalar equations, one for each
component of the Electric and Magnetic fields:

∇2Ex(x, z) + ω2µεEx(x, z) = 0

∇2Ey(x, z) + ω2µεEy(x, z) = 0

∇2Ez(x, z) + ω2µεEz(x, z) = 0

∇2Hx(x, z) + ω2µεHx(x, z) = 0

∇2Hy(x, z) + ω2µεHy(x, z) = 0

∇2Hz(x, z) + ω2µεHz(x, z) = 0

(67)

Note that, as regards the path followed from (62) to (66), only the last
two initial hypotheses have been actually applied (equations (67), where the
functions are explicitly not depending on y, also consider the uniformity
along y). The fact that all the field components satisfy a wave equation is
therefore a general result, which applies not only to dielectric waveguides,
but to any source-free, linear, isotropic, homogeneous medium.

TE modes

Let’s now assume that only the components of the first set, Ey(x, z), Hx(x, z)
and Hz(x, z), are not zero. Therefore, Ex(x, z) = Ez(x, z) = 0. Only one of
the three Electric field scalar equations from (67) is not a zero identity:
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∇2Ey(x, z) + ω2µεEy(x, z) = 0(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Ey(x, z) + ω2µεEy(x, z) = 0(

∂2

∂x2
+

∂2

∂z2

)
Ey(x, z) + ω2µεEy(x, z) = 0

(68)

Remembering hypothesis 2,

Ey(x, z) = e(x)f(z) = e(x)e−jkzz (69)

Note that each field component of E is represented by a scalar function
g(x, y, z). The space variables x, y, z, that this scalar function depends on,
have absolutely no relation to the direction of the component being evaluated.
In this particular problem, for the reasons already explained, Ey depends on
x and z, but in general, it is an ordinary scalar function defined in the R3

space: g(x, y, z).

(
∂2

∂x2
+

∂2

∂z2

)
e(x)e−jkzz + ω2µεe(x)e−jkzz = 0[

∂2

∂x2
e(x)

]
e−jkzz − k2

ze(x)e−jkzz + ω2µεe(x)e−jkzz = 0

(70)

The complex exponential e−jkzz is such that e−jkzz 6= 0, ∀z ∈ C. So, being a
common factor, it can be erased:

∂2

∂x2
e(x)− k2

ze(x) + ω2µεe(x) = 0

∂2

∂x2
e(x) + (k2 − k2

z)e(x) = 0

(71)

The wave vector is, in general:

k = kxux + kyuy + kzuz (72)

Hypotheses 1 implies that ky = 0, because all the fields are uniform along y.
As regards the remaining quantities:
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k2 = |k|2 = ω2µε
k2 = k2

x + k2
z

k2 − k2
z = k2

x

(73)

and then

d2

dx2
e(x) + k2

xe(x) = 0 (74)

The symbol of partial derivative has been replaced by d, being x the only
variable that e(x) depends on. This is the equation that will determine the
shape of all the fields components, starting from Ey that is being investigated
now.

The space is filled with different materials along x. Their parameters will
be µ = µ0 and, according to (43), ε = ε(x). If so, then

k2(x) = ω2µ0ε(x) = k2
x(x) + k2

z (75)

k, as well as its x component kx, will assume different values in the core
and the cover. The structure is instead uniform along z and so kz remains
constant.

Given that, equation (74) actually represents two equations:
d2

dx2
e(x) + k2

x1
e(x) = 0, |x| ≤ a

d2

dx2
e(x) + k2

x2
e(x) = 0, |x| > a

(76)

First equation is related to region 1 and second equation to region 2.
They are both Helmholtz equations: these are the only constraints that e(x)
is forced to have in the two regions of space.

They must be solved separately, because of the different kx, but both are
of the form (74), which admits several solutions, as pointed out in Section “A
specific case” of Appendix “A subset of Second order differential equations”.

The unknown functions e(x) in region 1 and region 2 are both allowed to
be:

1. an increasing and/or decreasing exponential with respect to x;
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2. a complex exponential;

3. a sinusoid.

For each equation in (76), e(x) is mathematically allowed to assume one
of these three shapes, indifferently. Remembering that e(x) represents the
x dependency of an Electric field, these solutions provide different kinds of
fields:

1. represents a field which exponentially increases, or which undergoes an
exponential attenuation, along x.

2. provides a field which is propagating along x.

3. corresponds to the field of a standing wave along x.

kx1 and kx2 will be chosen to realize the type of field that is desirable for
this waveguide structure.

A custom field with ∂/∂y = 0 and f(z) = e−jkzz has already been chosen.
Proceeding in the same way, a shape for e(x) is chosen, too.

Note, in fact, that this is not a full analysis of all the available solutions
of the equations (76). This is rather an attempt to find if, between those
solutions, a field which meets the desired requirements can be found.

Such a field should be able to propagate a signal inside the core along z
and to confine as much as possible this signal inside the core, being negligible
outside. The first feature is already granted by the condition f(z) = e−jkzz.
Then, the following solutions are chosen for e(x):

1. A sinusoidal shape inside the core, a stationary wave along x for |x| ≤ a,
representing a field which is confined inside this region. In order to
accomplish this, kx1 must be real.

2. An exponential decreasing shape in the cover, when |x| > a: while get-
ting away from the core, the field should vanish as rapidly as possible.
According to the mentioned Appendix, this can be realized when the
coefficient of e(x) in (76) is negative: consequently, kx2 must be pure
imaginary.
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This is not the consequence of a physical constraint upon this problem,
but an arbitrary choice, aimed at seeking a desired field between the available
ones.

Considering only the half-space x ≥ 0 for easiness:

e(x) =

A cos(kx1x) +B sin(kx1x), 0 ≤ x ≤ a

Ce−jkx2 (x−a) +Dejkx2 (x−a), x > a
(77)

As anticipated, kx1 is a real quantity. Condition 2 is satisfied if D = 0 and
kx2 pure imaginary with negative imaginary part: this is essential, otherwise
the term e−jkx2 (x−a) becomes an increasing exponential, which is physically
unacceptable, as considered in section Section “A specific case” of Appendix
“A subset of Second order differential equations”. Also the choice C = 0
and kx2 pure imaginary with positive imaginary part satisfies condition 2,
with neither mathematical, nor physical difference with respect to the first
choice. The term with C 6= 0 is chosen just because it conforms to all the
propagators here used, as specified in (1).

kx2 = −jγ, γ ≥ 0

−jkx2 = j2γ = −γ

γ = |kx2|

kx2 = −j|kx2|

−jkx2 = −|kx2|

(78)

and from (77)

e(x) = Ce−|kx2 |(x−a), x > a (79)

HavingD 6= 0 would give rise to a termDe|kx2 |(x−a), which is exponentially
increasing while taking away from the core (x growing above a): it would
be incompatible with the above requirements and it would be physically
unattainable.

The set of field components (60) has the property that the entire electric
field is transverse to the direction of propagation z. For this reason, this field
configuration gives rise to a Transverse Electric, TE, mode. Because of the
first equation in (77), such a mode can be symmetrical or anti-symmetrical
with respect to the plane x = 0.
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Even TE modes

In the system of equations (77), B = 0 creates a symmetrical mode with
respect to the plane (y, z) or x = 0, with e(x) reaching its maximum on the
plane itself. The function e(x) is defined in the whole space as:

e(x) =

A cos(kx1x), |x| ≤ a

A′e−|kx2 |(|x|−a), |x| > a
(80)

Note that |x| ≤ a is the synthesis of −a ≤ x ≤ a and the second line is the
synthesis11 of A′e−|kx2 |(x−a), x > a

A′e|kx2 |(x+a), x < −a
(81)

The function e(x) is an even function, because it is symmetrical with
respect to x. The TE mode represented by this e(x) is therefore called even
TE mode.

Such a field must satisfy the boundary conditions at the interface between
the two materials, represented by the plane x = a (and also the plane x =
−a). In particular, the tangent electric field must be continuous across this
interface.

A cos(kx1x)|x=a = A′e−|kx2 |(x−a)
∣∣
x=a

A′ = A cos(kx1a)
(82)

This is a constraint on the coefficient A′, whose value is determined when
A is given. A will remain a parameter: it represents the field amplitude and
it depends on the source strength. When the source and its intensity are
given, a numerical value can be assigned to A.

The tangent magnetic field must satisfy the same continuity condition
at the same interface. Between the (60) magnetic field components, only
Hz(x, y) is tangent to the x = a plane.

11This is a double expansion. The absolute value notation |x| represents x if x ≥ 0 and
−x if x < 0. So, |x| > a gives rise to two branches, one with x > a and one with x < −a.
In the first branch, where the x is certainly positive, |x|−a in the exponent simply becomes
x− a. In the second branch, where x is certainly negative, |x| − a is −x− a.
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Given e(x), the field component in the set (60) that can be immediately
determined is Ey(x, z), according to (69). In order to obtainHz(x, z), instead,
equation (55) (which is derived from the expansion of the curl equation (51))
must be recalled.

Hz(x, z) = − 1

jωµ

∂

∂x
Ey(x, z) (83)

Ey(x, z) has different definitions according to the region of space being
considered, and Hz(x, z) will, too.

H
(1)
z (x, z) = − 1

jωµ

∂

∂x
E(1)
y (x, z)

H
(2)
z (x, z) = − 1

jωµ

∂

∂x
E(2)
y (x, z)

(84)

where region 1 is |x| ≤ a and region 2 is |x| > a.

H
(1)
z (x, z)

∣∣∣
x=a

= H
(2)
z (x, z)

∣∣∣
x=a

− 1

jωµ

[
∂

∂x
E(1)
y (x, z)

]
x=a

= − 1

jωµ

[
∂

∂x
E(2)
y (x, z)

]
x=a[

∂

∂x
E(1)
y (x, z)

]
x=a

=

[
∂

∂x
E(2)
y (x, z)

]
x=a

(85)

The single derivatives have the following values:

[
∂

∂x
E(1)
y (x, z)

]
x=a

= − kx1A sin(kx1x)|x=a = −kx1A sin(kx1a)[
∂

∂x
E(2)
y (x, z)

]
x=a

= − |kx2 |A′e−|kx2 |(x−a)
∣∣
x=a

= −|kx2 |A′
(86)

Applying (85),
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−kx1A sin(kx1a) = −|kx2|A′

A′ =
kx1
|kx2|

A sin(kx1a)

(87)

Both equations (82) and (87) are related to A′ and they must be verified
at the same time. Then,

A cos(kx1a) =
kx1
|kx2 |

A sin(kx1a)

|kx2| = kx1 tan(kx1a)

(88)

This first relation for the – so far – unknowns kx1 and |kx2 | is called
characteristic equation. It must be verified in order for the desired fields to
exist, given that also the hypotheses 1-5 are already satisfied.

When having two unknowns, two equations are required to obtain their
values.

The relation (73) will assume two different forms, one for each medium of
the dielectric waveguide. In the medium 1, representing the core, by simple
substitution of the appropriate quantities, (73) becomes:

k2 = k2
x + k2

z

k2
1 = k2

x1
+ k2

z

(89)

In the medium 2, representing the cover :

k2 = k2
x + k2

z

k2
2 = k2

x2
+ k2

z

(90)

but from (78) it is known that kx2 is a pure imaginary, negative quantity.

kx2 = −jγ
γ = |kx2 |
kx2 = −j|kx2|
k2
x2

= j2|kx2|2 = −|kx2 |2
(91)

Equation (90) can then be rewritten in a more explicit form as
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k2
2 = k2

z − |kx2|2 (92)

Note that kz is the same quantity in both the media, so in both equa-
tions (89) and (92). This peculiarity has already been described in Section
“Oblique incidence of a plane wave on a surface”. Subtracting side-by-side
equation (92) from equation (89):

k2
1 − k2

2 = k2
x1

+ |kx2|2
ω2µ0ε0(εr1 − εr2) = k2

x1
+ |kx2|2

k2
x1

+ |kx2|2 = k2
0(n2

1 − n2
2)

(93)

The variables kx1 and |kx2| must satisfy at the same time the equations
(88) and (93): together, they are called the dispersion equations of the TE
even mode. The system composed by them can be solved to determine the
unknown values of these two variables. This system contains a trascendent
equation and a closed form for its solution is not available: therefore, a
graphical method is recommended to find it. The field defined in (80) will
then be fully determined, becoming a valid solution of Maxwell’s equations
for the present problem.

Odd TE modes

When A = 0 in the system of equations (77), an anti-symmetrical mode with
respect to the plane (y, z) or x = 0 is obtained. The function e(x) is:

e(x) =


B′e−|kx2 |(x−a), x > a

B sin(kx1x), |x| ≤ a

−B′e|kx2 |(x+a), x < −a

(94)

This e(x) function is an odd function, because it is anti-symmetrical with
respect to x. It represents an odd TE mode.

The procedure to fully determine e(x) is the same as in the case of the
even TE modes. The electric field tangent to the plane x = a must be
continuous: so, as in (82),

B sin(kx1x)|x=a = B′e−|kx2 |(x−a)
∣∣
x=a

B′ = B sin(kx1a)
(95)
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Note that the sign of B′ in the first line of (94) is determined by the value
of the sine in x = a. In the last line of (94), the coefficient of the exponential
function will have an opposite sign.

Using again equations (83) and (84), referring only to the region of space
x ≥ 0 to avoid ambiguity,

[
∂

∂x
E(1)
y (x, z)

]
x=a

= kx1B cos(kx1a)[
∂

∂x
E(2)
y (x, z)

]
x=a

= −|kx2|B′
(96)

Then, according to (85),

kx1B cos(kx1a) = −|kx2|B′

B′ = − kx1
|kx2|

B cos(kx1a)

(97)

It follows that (as in (88)):

B sin(kx1a) = − kx1
|kx2|

B cos(kx1a)

|kx2| = −kx1 cot(kx1a)

(98)

The system composed by this equation, along with the unvaried equation
(93), can be solved to obtain the unknown values kx1 and |kx2|, using a
graphical method as already pointed out. The field defined in (94) will be
fully determined for the TE odd modes, as well.

TM modes

Alternatevely to the first set (60) of components, the second one (61) can be
used. If only Hy(x, z), Ex(x, z) and Ez(x, z), are not zero, again, only one of
the three Magnetic field scalar equations from (67) is not a zero identity:
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∇2Hy(x, z) + ω2µεHy(x, z) = 0(
∂2

∂x2
+

∂2

∂z2

)
Hy(x, z) + ω2µεHy(x, z) = 0

(99)

Hypothesis 2 can also be applied to this single Magnetic field component:

Hy(x, z) = h(x)f(z) = h(x)e−jkzz (100)

With the same considerations made for the TE modes, the following cou-
ple of equation can be obtained:

d2

dx2
h(x) + k2

x1
h(x) = 0, |x| > a

d2

dx2
h(x) + k2

x2
h(x) = 0, |x| ≤ a

(101)

remembering that the materials are the same as before, so only ε is varying,
and µ remains constant. The same solution, with D = 0, is chosen for the
same reasons.

h(x) =

A cos(kx1x) +B sin(kx1x), 0 ≤ x ≤ a

Ce−jkx2 (x−a), x > a
(102)

The Magnetic field, being a single component, is entirely transverse to
the direction of propagation z: a Transverse Magnetic, TM, mode will be
considered. It can be symmetrical or anti-symmetrical with respect to the
plane x = 0.

Even TM modes

The term B = 0 in (99) originates a symmetrical TM mode with respect to
the plane (y, z). The function h(x), which reaches its maximum on the plane
itself, is defined as follows:

h(x) =

A cos(kx1x), |x| ≤ a

A′e−|kx2 |(|x|−a), |x| > a
(103)
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This is an even function, and it represents an even TM mode.
The fields must again satisfy the boundary conditions at the interface

between the two materials. The tangent magnetic field must be continuous:

A cos(kx1x)|x=a = A′e−|kx2 |(x−a)
∣∣
x=a

A′ = A cos(kx1a)
(104)

which is identical to (82) (the fields are, too).
Then, the continuity requirement of the electric magnetic field concerns

Ez(x, y): this is the only electric field component in (61) to be tangent to
the x = a plane.

The function h(x) is directly related to Hy(x, z), according to (100).
Ez(x, z) can be obtained, instead, from equation (59) (which is derived from
the expansion of the curl equation (56)).

Ez(x, z) =
1

jωε

∂

∂x
Hy(x, z) (105)

It has different definitions according to the region of space being consid-
ered:

E
(1)
z (x, z) =

1

jωε1

∂

∂x
H(1)
y (x, z)

E
(2)
z (x, z) =

1

jωε2

∂

∂x
H(2)
y (x, z)

(106)

where region 1 is |x| ≤ a and region 2 is |x| > a. Differently from (84), here
the permittivity explicitly shows the change in the materials between the two
regions.

This field component must be continuous across the x = a plane:

E
(1)
z (x, z)

∣∣∣
x=a

= E
(2)
z (x, z)

∣∣∣
x=a

1

jωε1

[
∂

∂x
E(1)
y (x, z)

]
x=a

=
1

jωε2

[
∂

∂x
E(2)
y (x, z)

]
x=a

1

ε1

[
∂

∂x
E(1)
y (x, z)

]
x=a

=
1

ε2

[
∂

∂x
E(2)
y (x, z)

]
x=a

(107)
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Note that the permittivities don’t erase like the permeabilities µ0 in (85).
The single derivatives have the following values:

[
∂

∂x
H(1)
y (x, z)

]
x=a

= − kx1A sin(kx1x)|x=a = −kx1A sin(kx1a)[
∂

∂x
H(2)
y (x, z)

]
x=a

= − |kx2|A′e−|kx2 |(x−a)
∣∣
x=a

= −|kx2|A′
(108)

Applying (107),

− 1

ε1

kx1A sin(kx1a) = − 1

ε2

|kx2|A′

A′ =
ε2

ε1

kx1
|kx2|

A sin(kx1a)

(109)

Using both equations (104) and (109)

A cos(kx1a) =
ε2

ε1

kx1
|kx2|

A sin(kx1a)

|kx2 | =
n2

2

n2
1

kx1 tan(kx1a)

(110)

A quick comparison between this relation and its corresponding (88)
shows a new term, that was previously not present: n2

2/n
2
1. The more the

refractive indexes will be close to each other, the more this ratio will be close
to unity.

The unknown values kx1 and |kx2| can be obtained as graphical solutions
of the system composed by equations (110) and (93). The TM even modes
will be represented by the field fully defined in (99).

Odd TM modes

A zero A coefficient in the system of equations (102) will provide an anti-
symmetrical mode with respect to the plane (y, z) or x = 0. The function
h(x) is, exactly as in equation (94):
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h(x) =


B′e−|kx2 |(x−a), x > a

B sin(kx1x), |x| ≤ a

−B′e|kx2 |(x+a), x < −a

(111)

An odd h(x) function is obtained: it is anti-symmetrical with respect to
x and represents an odd TM mode.

The usual procedure is applied. Continuity of the magnetic field tangent
to the plane x = a provides (as in equation (95)):

B′ = B sin(kx1a) (112)

Equations (105) and (106) (referring only to the region of space x ≥ 0 to
avoid ambiguity) provide

[
∂

∂x
H(1)
y (x, z)

]
x=a

= kx1B cos(kx1a)[
∂

∂x
H(2)
y (x, z)

]
x=a

= −|kx2|B′
(113)

From (107),

1

ε1

kx1B cos(kx1a) = − 1

ε2

|kx2|B′

B′ = −ε2

ε1

kx1
|kx2|

B cos(kx1a)

(114)

It follows that (as in (110)):

B sin(kx1a) = −ε2

ε1

kx1
|kx2|

B cos(kx1a)

|kx2| = −
n2

2

n2
1

kx1 cot(kx1a)

(115)

As for the even TM modes, the only difference between (115) and (98) is
the n2

2/n
2
1 term.
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This equation, along with (93), composes a system that can be graphically
solved to obtain the unknown values kx1 and |kx2|. The field for the odd TM
modes, defined in (111), will then be fully determined.

Normalized equations

For each of the TE and TM modes, a system of two equations must be solved
in order to fully characterize the Electro-magnetic field which represents a
solution of the Maxwell’s equations. These couples of equations (as antici-
pated) are called dispersion equations of the modes. They are:

• equations (88) and (93) for TE even modes; |kx2 | = kx1 tan(kx1a)

k2
x1

+ |kx2|2 = k2
0(n2

1 − n2
2)

(116)

• equations (98) and (93) for TE odd modes; |kx2 | = −kx1 cot(kx1a)

k2
x1

+ |kx2|2 = k2
0(n2

1 − n2
2)

(117)

• equations (110) and (93) for TM even modes; |kx2| =
n2

2

n2
1

kx1 tan(kx1a)

k2
x1

+ |kx2|2 = k2
0(n2

1 − n2
2)

(118)

• equations (115) and (93) for TM odd modes. |kx2| = −
n2

2

n2
1

kx1 cot(kx1a)

k2
x1

+ |kx2|2 = k2
0(n2

1 − n2
2)

(119)

These systems, however, are not solved in the form they have been pre-
sented so far.
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Both sides of equations (88), (98), (110) and (115) are multiplied by a and
both sides of equation (93) are multiplied by a2. For example, the system
(116) becomes:  a|kx2| = akx1 tan(akx1)

a2k2
x1

+ a2|kx2|2 = a2k2
0(n2

1 − n2
2)

(120)

Note that each member like akx1 and a|kx2| is a dimensionless quantity
and that the tangent has now akx1 both as argument and as multiplying
factor.

Let

u = akx1

w = a|kx2|

v2 = a2k2
0(n2

1 − n2
2)

(121)

So, system (116) can also be written in a more essential, straightforward
manner:  w = u tan(u)

v2 = u2 + w2
(122)

This provides a standard set of equations related to the TE even modes.
They do not depend on the actual thickness a of the core, so they are always
the same for all the problems. This is the standard, normalized form for the
dispersion equations.

Each equation in the system (122) represents a curve: if and where the
two curves intersect, the system has a solution (u,w). It may have zero,
one or more solutions, corresponding to zero, one or more TE even modes
available for the dielectric slab.

Because the system (122) is standard for each TE even modes problem,
it is worth mentioning some features of the curves it generates.

These curves will be evaluated only in the 1st quadrant, where u ≥ 0, w ≥
0. The half-plane w < 0 (composed by the 3rd and 4th quadrants) is not
relevant, being w = a|kx2|. a is a thickness, and it is a real, positive quantity
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due to physical reasons. |kx2| is the modulus of a complex number, which is
a real, non-negative quantity. So, w ≥ 0.

As pointed out in the solution (77) of equations (76), kx1 is a real quan-
tity too. Given that, the 2nd quadrant, where w ≥ 0 and u < 0, would
provide redundant information with respect to the 1st quadrant. In fact,
let’s consider a given solution (u(0), w(0)) found in the 1st quadrant. Its ab-

scissa value u(0) corresponds to ak
(0)
x1 . Considering −k(0)

x1 in the 2nd quadrant
would provide the same TE and TM even modes, because

cos(k(0)
x1
x) = cos(−k(0)

x1
x)

(the cosine is an even function). As regards the TE and TM odd modes,

−k(0)
x1 would provide modes which are symmetrical with respect to the (y, z)

plane12 to the modes provided by k
(0)
x1 , in fact

sin(−k(0)
x1
x) = − sin(k(0)

x1
x)

(being sine an odd function). With a symmetrical dielectric slab, this would
not be a significant change; it is actually not a new field configuration; it is
like observing the same solution from an opposite point of view. Moreover,
the modulus of the field would be the same in both cases.

So, the graphical solution of system (122) will be only found for u ≥
0, w ≥ 0.

The function u tan(u) resembles the well-known tan(u), especially as re-
gards the following features: both intersect the origin (0, 0), both diverge
as u → π/2 + mπ (m ∈ Z) and both are not defined for u = π/2 + mπ.
However, u tan(u) is not a periodic function, due to the multiplying factor u;
it is also an even function, being the product of two odd functions. As shown
in Figure 6, u tan(u) raises slowly for small u (the u multiplication lowers
the overall value of u tan(u) with respect to tan(u)); for greater u instead, it
diverges more rapidly (above tan(u), due to the same multiplication by u).

This function must intersect the circumference or radius v, defined with
the equation v2 = u2 +w2. The only value in (122) that depends on the spe-
cific dielectric slab problem is v itself: this value will determine the number
and the position of the intersections with the other curve. Respectively, these
features are related to the number of available modes and to the quality of

12In the space of the dielectric slab.

This work is licensed under a Creative
Commons “Attribution-ShareAlike 4.0
International” license.

44

The Curling Team

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://thecurlingteam.github.io


−7

2
π
−3π −5

2
π
−2π −3

2
π
−π −π

2
0 π

2

π 3

2
π

2π 5

2
π

3π 7

2
π

−5

−4

−3

−2

−1

0

1

2

3

4

5 tan(u)
u tan(u)

Figure 6: Comparison between tan(u) and u tan(u).
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the modes, in particular how much they are bounded to the core, because a
higher |kx2| will imply a higher bound.

The designer must only specify four parameters:

• the core half-thickness a;

• the vacuum wavelength of the signal λ;

• the refractive indexes of the two materials n1 and n2.

being

v2 = a2k2
0(n2

1 − n2
2) = a2

(
2π

λ

)2

(n2
1 − n2

2) (123)

Alternatively to λ, the knowledge of ω is sufficient, because

k2
0 = ω2µ0ε0 (124)

but the use of λ is more common.
With this information, v is known and a solution to system (122) can

be looked for. Each of these four fundamental parameters (a, λ, n1 and n2)
determines the radius of the circumference.

With the equations (122), at least one intersection is theoretically always
possible, so one TE even mode should always be available: this makes the
TE even mode the fundamental mode of dielectric symmetrical slabs. w = −u cot(u)

v2 = u2 + w2
(125)

is the system of equations corresponding to (117), for the TE odd modes. w =
n2

2

n2
1

u tan(u)

v2 = u2 + w2

(126)

corresponds to (118), as regards the TM even modes.
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Figure 7: Variable number of available modes according to the values of the
radius v: in the first plot, only one intersection occurs; in the second plot,
where the circumference has a greater v, two intersections are generated.
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 w = −n
2
2

n2
1

u cot(u)

v2 = u2 + w2

(127)

is derived from (119) for the TM odd modes.

Note that while the first equation of systems (122) and (125) do not
depend on the custom quantities n1 and n2, the first equations of systems
(126) and (127) do, instead.

Given the numerical solution obtained by graphical methods for u and w,
the actual values of kx1 and |kx2| can be obtained dividing the results by a.

Assuming that the physical parameters of the guide are known (a, n1,
n2), if the frequency is fixed, Figure 7 shows that a finite set of solutions is
available, that is: a finite number of modes. It is the same for TM modes.

This is different from parallel plate or rectangular metallic waveguides,
for example, where an infinite, numerable set of solutions could be found.
This kind of dielectric waveguides provides only a finite number of modes.

Figure 7 shows another fundamental feature of these solutions: consider-
ing always the same mode, for example the first TE even mode, if the fre-
quency increases it becomes more confined. In fact, raising the frequency
leads to an increment of the radius v of the circumference, then the intersec-
tion with the tangent (or cotangent) branch is higher, and the corresponding
|kx2| is greater. The higher its value, the stronger the field confinement.

Dielectric cutoff condition

There is a non-obvious relation between the frequency ω of a mode and its
angle of incidence θc: the knowledge of the former quantity is equivalent to
the knowledge of the latter.

From equation (89):

kz =
√
k2

1 − k2
x1

(128)

From equation (92):

kz =
√
k2

2 + |kx2|2 (129)
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These are equivalent expressions to determine kz, the propagation con-
stant of the mode, which (as specified in the initial hypothesis 2) is a real
quantity: kz ∈ R.

As already observed in the solution (77) of equations (76), kx1 is a real
quantity, so k2

x1
is a real, non-negative quantity. Given that, equation (128)

implies that

kz ≤ k1 (130)

Being kz in any case a real quantity, of course it should be kx1 ≤ k1 in (128)
and therefore (130) is actually 0 ≤ kz ≤ k1, but this full expression is not
necessary, as it will be immediately shown.

Also |kx2 | is a real, non-negative quantity: therefore, from equation (129),

kz ≥ k2 (131)

Equations (128) and (129) are equivalent, alternative definitions of kz and
must be verified at the same time; so, also the inequalities (130) and (131)
must be verified at the same time: kz ≤ k1

kz ≥ k2

(132)

It follows that, for each mode:

k2 ≤ kz ≤ k1 (133)

This provides a range where kz is allowed to span. It can not be a value
outside this interval.

Inequality (133) can be written in an alternative form, knowing that
k1 = n1k0 and k2 = n2k0. Dividing all members by k0:

k2

k0

≤ kz
k0

≤ k1

k0

n2 ≤ neff ≤ n1

(134)

where neff is the effective refractive index and its knowledge is equivalent to
the knowledge of kz.

By inspection of Figure 7, considering a single branch of u tan(u) or
−u cot(u) and so a single mode, the quantity that varies the most is |kx2|.
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In fact, while kx1 will at least vary in a π/2 interval starting from its initial
value, |kx2| can range from 0 to (theoretically) infinity. As already mentioned,
this quantity determines the confinement of the mode.

For low frequencies, such that the circumference does not intersect the
branch of the considered mode, the mode is not confined and not available
for propagation inside the core.

Increasing the frequency, the cutoff condition is verified when the circum-
ference reaches the considered branch. At this point, |kx2| reaches the value
0 and the confinement of the mode is barely possible13. The mode activates
and kz = k2 assumes its inferior limit value.

For higher frequencies, overcome the cutoff condition, the mode is con-
fined and fully available for propagation: the higher the frequency, the higher
|kx2|, the stronger the confinement. In the limit |kx2| → ∞, even if inequality
(131) and equation (129) could induce to the conclusion that also kz →∞, it
should be remembered that also inequality (129) must be verified: therefore,
in the best achievable confinement14, kz → k1.

Snell’s law and mode confinement

Let the three-dimensional space be divided in two regions: for x ≥ 0, filled
by a medium with refractive index n2, and for x < 0, filled by a medium
with refractive index n1 > n2. The plane x = 0 (orthogonal to the paper, in
Figure 8) represents the interface between these two media.

In Figure 8, the red line is normal (orthogonal) to the interface. Usually,
n1 and n2 are two small quantities, close to each other and close to 1. For
example, for light at λ = 600 nm: water (at 20 ◦C) has n = 1.33, crown glass
(which is used in optics) has n = 1.52.

Let a plane wave impinge on the interface. The direction of propagation
of the wave (that is, the direction of the wavevector) forms an angle θ1 with
the direction of the normal line. After the plane wave crossed the interface,
it will assume in general a new direction, forming an angle θ2 6= θ1 with the
normal line.

13This is the limit condition for the confinement: when |kx2
| = 0, the mode is not

confined, but for (even little) higher values, it is, because the exponent of e−|kx2 |(x−a)

becomes not zero.
14This is actually unpractical, though, because it would require a huge circumference

radius, which would activate several modes more than the chosen one, with undesirable
effects.
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Snell’s law regulates the relation between these two angles:

n1 sin θ1 = n2 sin θ2 (135)

This relation has already been rigorously obtained in Section “Oblique
incidence of a plane wave on a surface”, with the first equation in system
(23). The Electric and Magnetic field components which are tangent to the
surface separating medium 1 from medium 2 must be continuous across the
interface: it is worth noting that Snell’s law is just one of the consequences of
this constraint. When evaluating its features and its limits, it is recommended
to refer to the field expressions in the mentioned previous Section, and not
just on (135) taken as a free-standing law.

Note

Space is filled differently in Figure 1, where the x-axis is parallel
to the interface, from Figures 5 and 10 (used here as a reference),
where the x-axis is instead orthogonal to the interface. However,
all the images have the same right-handed coordinate system and
the only difference is that the roles of kx and kz presented in
Section “Oblique incidence of a plane wave on a surface” are
exchanged. Also, the angles θi, θr, θt follow in all the images
the same convention: they are the angles between the k vector
direction of each wave and the direction of the normal vector to
the separation surface between the two media.

The range [0, π/2] will be considered for θ1. The same considerations
apply for [−π/2, 0] and it would be redundant to consider also this range.
For angles θ > π/2 or θ < −π/2, the initial plane wave would no more be
in the medium n1: Snell’s law would be applied starting from the opposite
side, with n2 as the refractive index of the initial medium.

If θ1 ∈ [0, π/2], sin θ1 ∈ [0, 1], and the higher the angle, the higher its
sine.

Let initially be θ1 almost 0, and then let this value raise. (135) imposes
a relation between the sines of these angles:

sin θ2 =
n1

n2

sin θ1 (136)
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In particular, the sine of θ2 grows as much as n1/n2 times the sine of θ1: if
n1 > n2, sin θ2 is greater15 than sin θ1. So, also the angle θ2 that is generated
will be greater than θ1 for each test value of θ1.

While θ1 increases, it will reach a value θ`1 < π/2 for which the corre-
sponding θ`2 will equal π/2: the plane wave is bended so much that it is no
more able to exit the interface in x = 0. Therefore, the wave follows a
direction which is parallel to that interface and does not reach the medium
2. This is a limit condition and the corresponding angle θ`1

sin θ`1 =
n2

n1

sin θ2 =
n2

n1

(137)

is called limit angle or critical angle. If θ1 ≥ θ`1, the incident plane wave will
be confined inside the medium 1, and for θ1 > θ`1 no real value of θ2 satisfies
Snell’s law (135). In fact, as more explicitly shown by (136), sin θ2 should
assume values greater than 1, which is not possible for a sine function of a
real angle: refer to Chapter “Complex angles in Snell’s law” of Appendix for
this case16.

When dealing with Snell’s law, only refraction is often considered. Any-
way, it is not the only phenomenon which occurs: each plane wave impinging
on an interface will undergo both refraction and reflection. Reflection is
well considered in textbooks17 in the simple case when θ1 = 0, so for a wave
normally incident on an interface plane.

As regards the power carried by the plane wave, part of it crosses the
interface, is refracted and can proceed in the medium 2: its direction of
propagation is bended at the interface according to Snell’s law; part of it,

15Not far greater, remembering the considerations made on the n values, but anyway
higher than 1.

16As it is shown in the Appendix, in order for the inequality sin θ2 > 1 to be verified, a
complex value of θ2 is needed. With the hypothesis 0 ≤ θ1 ≤ π/2, it must be

θ2 =
π

2
− jarcsinh

(√
n21
n22

sin2 θ1 − 1

)
+ 2kπ, k ∈ Z

So, there is still a mathematical solution for θ2 in equation (136), but this angle has no
physical meaning: there is no propagating wave in medium 2. A −π/2 ≤ θ1 ≤ 0 would
generate the inequality sin θ2 < −1. This is simply a symmetrical condition (with opposite
sign) with respect to the previous one: also the needed θ2 is the one shown above, with
opposite sign.

17For example, David M. Pozar. Microwave engineering. Wiley, Hoboken (NJ), 3rd
edition, 2005.
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instead, is reflected, and it goes back in the medium 1 with the same angle of
incidence θ1, but with opposite direction. A minimalist example of this joint
action, referred to the same plane wave and the same geometry of Figure 8,
is shown in Figure 9.

If θ1 > θ`1, ideally all the incident power is reflected back in the medium
1: there is no refraction, but only reflection. It is worth observing
in fact that the θ1 angle of the reflected wave is not a new value of the
refraction angle, because that angle does not exist any more and refraction
does not occur. The “second” θ1 angle is the result of a different phenomenon:
reflection. It has always occurred: however, when refraction occurs too,
reflection is often negligible, because most of the power of the incident wave
crosses the interface.

On the contrary, when refraction can not occur, due to an angle of inci-
dence which exceeds the limit-angle θ`1, reflection becomes significant. Ideally
all the power carried by the incident wave is reflected back at the inter-
face: there is no transmission of power to the medium 2 and a full reflection
occurs.

A waveguide includes not just one, but two interfaces between the medium
1 and the medium 2: one above the medium 1, and one below it, according to
Figure 5. Assuming that the plane wave has been generated in the medium
1 in an appropriate way, if it is impinging on the upper interface with an
angle θ1 > θ`1, after the first full reflection it will meet the second interface,
where the same condition applies, and so on.

This way, all the power carried by the plane wave remains confined in
the medium 1, that is in the core.

This behaviour makes possible the use of dielectric waveguides to carry
signals.

Figure 10 shows the path followed by a plain wave in a waveguide, with
generic wavevector k1 having an angle of incidence θ1 > θ`1. Note that, in
order to explicitly show the direction of propagation z, a different perspective
is assumed with respect to Figure 5, which has been rotated by 90◦ in the
plane of the core, towards the observer.

Figure 10 also explicitly represents equations (89) and (128). The wavevec-
tor components can be put in relation with the angle θ1, too. θ1 is the angle
between the direction of k1 and the direction which is normal to the dielectric
interface (red line), as well as (by geometric considerations) between k1 and
the vertical dashed line parallel to kx1 . Consequently,
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θ2

θ1

n1

n2

Figure 8: Refraction of a plane wave impinging on the interface between two
media.

incident wave

refracted wave

reflected wave

θ2

θ1 θ1

n1

n2

Figure 9: Complete description of the plane wave behaviour at the interface
between two media.
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kz = k1 sin θ1 (138)

and also

kx1 = k1 cos θ1 (139)

Equation (138) can alternatively be written as

kz = n1k0 sin θ1 = n1ω
√
µ0ε0 sin θ1 (140)

This proves that there is a relation between the angle of incidence θ1 and
the value of kz.

Moreover, being

0 ≤ sin θ1 ≤ 1 (141)

necessarily will also be from (140)

0 ≤ kz ≤ n1k0 (142)

Also,

θ1 ≥ θ`1 (143)

that can be rewritten (applying the sine function to both members and re-
membering (137)) as

sin θ1 ≥
n2

n1

(144)

So (again from (140)) it will be

kz ≥ n1k0 ·
n2

n1

(145)

that is

kz ≥ n2k0 (146)

Because both the conditions (142) and (146) on kz must be verified at
the same time,
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 0 ≤ kz ≤ n1k0

kz ≥ n2k0

⇒

 0 ≤ kz ≤ k1

kz ≥ k2

⇒ k2 ≤ kz ≤ k1 (147)

These are the same conditions in (132) and (133), obtained here through
an alternative approach leading to the same results.

As already stated, the cutoff condition for a mode occurs when the value of
|kx2 | equals 0. Referring to Figure 7 and considering only the TE even modes
as a first example, the w = u tan(u) branches will satisfy this condition when
they cross the u-axis. It is the abscissa axis, with equation w = 0: |kx2| = 0
is equivalent to w = a|kx2| = 0.

u tan(u) = 0

u = 0 ∨ tan(u) = 0
(148)

The trivial solution u = 0, which implies kx1 = 0, is usually not consid-
ered: it would correspond to a field which is not confined and, inside the core,
would not create a stationary wave, having a zero kx1 . Also tan(u) reaches 0
for u = 0. All the other zeros of the tan(u) in the 1st quadrant are suitable:

u = nπ, n = 1, 2, . . .

akx1 = nπ
(149)

Each u tan(u) branch corresponds to a mode. It is activated – as antic-
ipated – when the circumference u2 + w2 reaches a radius v such that it is
able to intersect the specific u tan(u). The first intersection occurs when the
mode is at cutoff, on the u-axis. Here,

w = 0⇒

 u tan(u) = 0, u = nπ

v2 = u2 + w2 = u2
⇒ v = u (150)

When the cutoff condition for a specific mode is met, the circumference
radius v assumes the same value as the abscissa u: being v related to the
frequency f of the actual sinusoidal signal inside the core, the value assumed
by f will be called cutoff frequency of the mode. Its value can be easily
obtained.
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The circumference equation is

v2 = u2 + w2 (151)

At cutoff, w = 0. Remembering equation (121),

v2 = u2 + w2 ⇒ a2k2
0(n2

1 − n2
2) = u2 (152)

Using (124), remembering that ω = 2πf and applying the square root to
both the sides:

a2ω2µ0ε0(n2
1 − n2

2) = u2

a24π2f 2µ0ε0(n2
1 − n2

2) = u2

2aπf
√
µ0ε0

√
n2

1 − n2
2 = u

(153)

Remembering that
√
µ0ε0 = 1/c and equation (149),

2aπf

c

√
n2

1 − n2
2 = u

2aπf

c

√
n2

1 − n2
2 = nπ

f = fc =
nc

2a
√
n2

1 − n2
2

(154)

According to the acceptable values 1, 2, . . . of n, these are the cutoff fre-
quencies fc of the TE even modes of the dielectric slab waveguide. Sometimes,
it is more convenient to refer to the wavelengths λc. From equation (154),
remembering that λ = c/f ,

λc =
2a
√
n2

1 − n2
2

n
(155)

Equation (140) shows the relation between the propagation constant kz
and the angle of incidence θ1. Moreover:

kz = n1k0 sin θ1

n2k0 = n1k0 sin θ1

sin θ1 =
n2

n1

(156)

This work is licensed under a Creative
Commons “Attribution-ShareAlike 4.0
International” license.

58

The Curling Team

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://thecurlingteam.github.io


When the frequency of a sinusoidal signal inside the waveguide is such
that a specific mode is at cutoff, the propagation constant of this mode kz
reaches its lowest value k2 = n2k0 (this was already pointed out in the
observations after the inequality (133)): not only, but its angle of incidence
θ1 reaches its lowest limit θ`1.

Therefore, also the frequency of the signal is related to the angle of in-
cidence: even if apparently there should be no relation between these two
quantities, they turn out to be strictly bound. If the frequency is forced to
be at its cutoff value f = fc, the angle of incidence is forced to be the limit
angle θ1 = θ`1. This is the only acceptable value for this angle, when the
mode is in that condition.

This behaviour is imposed by the equations that have been used to char-
acterize this physical system and its structure.

It has also been shown that, when the mode reaches the highest achievable
confinement18, kz reaches the limit value of k1 = n1k0. Then,

kz = n1k0 sin θ1

n1k0 = n1k0 sin θ1

sin θ1 = 1

θ1 =
π

2

(157)

The angle of incidence is forced to assume its highest value, π/2 (if θ1

exceeded π/2, the wave would not be any more inside the core).
In all the intermediate situations, when the frequency f of the sinusoidal

signal is above the cutoff and the mode is active, the angle of incidence for
a specific mode will be forced to assume a single value between θ`1 and π/2,
depending on f :

θ`1 ≤ θ1 ≤
π

2
(158)

From another perspective, recalling Figure 7, a frequency value f of the
sinusoidal signal will cause a finite number M of intersections between the
v2 = u2 + w2 circumference and the u tan(u) branches: this is the finite

18Because the frequency of the sinusoidal signal inside the waveguide is high enough
to reach this condition in one of the u tan(u) branches, which corresponds to the specific
mode.
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number of modes that are active (above cutoff) at f . Correspondingly, the
frequency f allows for the same, finite number M of angles of incidence, one
for each active mode, and no more. The above considerations apply to
each of these modes.

The sinusoidal signal generated by the source is then allowed to assume
only M field configurations inside the core19, each one with its angle of inci-
dence θ1 and with its propagation constant kz. For a given frequency f , only
these allowed values of θ1 will satisfy the self-consistence condition listed in
the Introduction, letting the mode propagating along z.

19Its energy will split between those available modes and will propagate in M different
ways, with M different speeds, along z.
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A subset of Second order
differential equations

Introduction

The general form of a linear, second order, homogeneous, ordinary differential
equation with constant coefficients is:

my′′(t) + by′(t) + ky(t) = 0 (159)

with t ∈ R and m, b, k ∈ R constants, not depending on t.
The solution of (159) is not obtained by developing the equation, nor by

direct integration. It is simply guessed that a solution of the form

y(t) = ert (160)

can exist, with r ∈ C in the most general case. This solution is, at the present
time, not necessarily the only one. To verify if (160) is really a solution, it
must be substituted in (159):

mr2ert + brert + kert = 0 (161)

Observing that, even with r ∈ C,

ert 6= 0, ∀t ∈ R (162)

equation (161) can be rewritten as

mr2 + br + k = 0 (163)

which is known as the characteristic polynomial20 of equation (159).

20Alternatively named characteristic equation.
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Its roots

r1,2 =
−b±

√
b2 − 4km

2m
(164)

determine the form of the guessed solution (160). The functions

f1(t) = er1t

f2(t) = er2t
(165)

are solutions of (159) if and only if r1,2 are solutions of the characteristic
polynomial. Being equation (159) linear, being the therein contained deriva-
tives linear operators, being its coefficients m, b, k constant, if f1(t) and f2(t)
are solutions of (159), then any linear combination of these functions

f(t) = C1f1(t) + C2f2(t) (166)

with C1, C2 ∈ C is still a solution of (159). The fact that coefficients C1 and
C2 can be complex numbers does not change the specified linearity features
of (159).

Two linearly independent functions are required to determine the general
solution of a second order, linear, differential, homogeneous, ordinary differ-
ential equation like (159). If f1(t) and f2(t) generate a non-zero Wronskian21,
they are linearly independent. If f1(t) and f2(t) are linearly independent,
they constitute a fundamental set of solutions of equation (159): this implies
that any solution of (159) can be expressed in the form (166).

Only after these verifications it can be stated that the initial guess made
with (160) is correct: not only, it provides a full characterization of the
solutions of (159).

The roots (164) can be:

1. Both real, when b2 − 4km > 0: r1, r2 ∈ R, r1 6= r2. It can be proved
that the general solution to (159) is:

f(t) = C1e
r1t + C2e

r2t (167)

21It will not be further discussed here, but it is described in most of textbooks about
differential equations.
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2. Real and repeated, when b2−4km = 0: r1, r2 ∈ R, r1 = r2. The general
solution is:

f(t) = C1e
rt + C2te

rt, r = − b

2m
(168)

3. Complex conjugate, when b2 − 4km < 0: r1, r2 ∈ C, r1 = r∗2. The
general solution can initially be written in the same form of the first
case:

f(t) = C1e
r1t + C2e

r2t (169)

Note that, according to the values of C1 and C2, this can lead to a real
f(t), as well as to a complex f(t). So, even a real initial equation like
(159) can lead to a complex solution.

A specific case

Helmholtz wave equation can be considered as a specific case of (159):

y′′(t) + ky(t) = 0 (170)

with m = 1, b = 0. Roots of the characteristic polynomial are

r1,2 = ±j
√
k

m
(171)

and the couple of solutions is

f1(t) = ej
√

k
m
t, f2(t) = e−j

√
k
m
t (172)

It can be proved through the Wronskian that they are linearly indepen-
dent and they are a fundamental set of solutions. So, any linear combination
of (172) is also a solution to (170).

Using C1 = C2 = 1 will lead to a complex solution:

f(t) = ej
√

k
m
t + e−j

√
k
m
t (173)

Different choices of the values of these coefficient can instead lead to real
solutions. Not only:
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f1(t) =
1

2
ej
√

k
m
t +

1

2
e−j
√

k
m
t = cos

(√
k

m
t

)

f2(t) =
1

2j
ej
√

k
m
t − 1

2j
e−j
√

k
m
t = sin

(√
k

m
t

) (174)

f(t) = C1 cos

(√
k

m
t

)
+ C2 sin

(√
k

m
t

)
(175)

A real, alternative fundamental set of solutions has been determined, by
an alternative choice for the coefficients in (172). Of course, the fundamental
set (172) itself can be obtained back from (175), using Euler’s identity. Set
(175) is sometimes preferred, because it is composed by real functions.

It can also be observed that the coefficients C1, C2 (their number is the
same as the order of the differential equation) have a double use:

• If the fundamental set of solutions is not the desired one, appropriate
values of these coefficients can generate an alternative fundamental set
of solutions. An example of this procedure has already been made in
(174) to switch from set (172) to set (175).

• If instead the fundamental set of solutions is accepted, the differential
equation (170) can be fully solved, using the initial conditions y(t0) and
y′(t0), which will give a specific value to both the coefficients C1 and
C2: then, for that problem, the specific solution of the equation is fully
determined.

The fundamental set (172) does not only represent complex exponentials.
In fact, for all the cases when the ratio k/m is a negative, real number:

f1(t) = ej
√

k
m
t, f2(t) = e−j

√
k
m
t,

k

m
< 0

f1(t) = e
j
√
−| km |t = e

j·j
√
| km |t, f2(t) = e

−j
√
−| km |t = e

−j·j
√
| km |t

f1(t) = e
−
√
| km |t, f2(t) = e

√
| km |t

(176)
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f(t) = C1e
−
√
| km |t + C2e

√
| km |t (177)

These functions produce a non-zero Wronskian: therefore, they consti-
tute a fundamental set of solutions. According to the physical reality that
equation (170) represents22, one of them is often unacceptable: in this case,
one of the constants C is forced to be 0.

Summary

An equation of the form (170) can have three different sets of fundamental
solutions:

• a couple of complex conjugate exponentials: set (172);

• for the case k/m < 0, set (172) becomes a couple of respectively de-
creasing and increasing exponentials: set (177);

• a couple of sinusoidal functions: set (175).

According to the form of the initial equation and to the physical problem
it describes, it could be useful to choose one of these sets rather than the
others, to better fit the desired solution.

22And according to the sign conventions followed to express the fields.
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Complex angles in Snell’s law

Consider Snell’s law of refraction23 in the following form:

sin(θ) =
n1

n2

sin(θi) (178)

It has already been presented in Section “Snell’s law and mode confine-
ment”. Refer to Figure 11. All the angles are by convention between the
direction of propagation of the wave and the normal vector to the surface
separating medium 1 from medium 2. Let this surface be the plane z = 0 in
the three-dimensional space, and the normal vectors be the unit vectors of
the z-axis, −uz for medium 1 and uz for medium 2.

If n1 > n2 (and this is physically possible), there will be an angle θ`i such
that

sin(θ) = 1 =
n1

n2

sin(θ`i ) (179)

and therefore

sin(θ`i ) =
n2

n1

(180)

Note that, if n1 > n2, θ`i < π/2. So, θ`i is not the highest allowed value
for the angle of incidence θi. It can raise even more, till π/2. For all the
allowed values of θi greater than θ`i ,

n1

n2

sin(θi) > 1 (181)

23As stated in Section “Oblique incidence of a plane wave on a surface” after system
(23), in its most general form Snell’s law is about refraction and reflection. Here, the
reflection quantities are not considered.
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the Right Hand Side of Snell’s law (178) is greater than 1. There is no real
value for the angle θ in medium 2 which is able to satisfy the relation (178)
when (181) holds. However, Snell’s law is still valid and, in general, θ must
be complex: just, it will no more correspond to a physical angle.

k1
k

(1)
x

k
(1)
z

θi

k2k
(2)
x

k
(2)
z

θ

ε1 ε2

x

y z

Figure 11: Snell’s law of refraction at the interface between two different
dielectric media.

Propagator 1

The following term defines the propagation of the sinusoidal Electro-Magnetic
field in medium 2:
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ejk2·r = e
j
(
k
(2)
x ,0,k

(2)
z

)
·(x,y,z)

=

= ejk2(sin(θ),0,cos(θ))·(x,y,z) =

= ejk2 sin(θ)xejk2 cos(θ)z

(182)

k2 = |k2| is the magnitude of the wavenumber and it is by this definition
a non negative real value. The quantity (182) is called propagator.

If it must represent an evanescent wave which attenuates in the z direc-
tion, cos(θ) must be a pure imaginary number, with non-negative imaginary
part.

This can be accomplished in more than one way. For example, it is
possible to require:

k(2)
z = k2 cos(θ) = jκ (183)

which implies

cos(θ) = j
κ

k2

(184)

κ must then be a real and non-negative value. This way, (182) becomes:

ejk2·r = ejk2 sin(θ)xe−κz (185)

Some mathematical considerations on Snell’s law (178) are here presented
to obtain the acceptable values of θ for (183) and (185): note that their com-
putation is just an exercise. Snell’s law is in fact deduced from the propaga-
tors of the incident, reflected and transmitted wave, as it has been rigorously
obtained in Section “Oblique incidence of a plane wave on a surface”. In
the case of an evanescent wave, Snell’s law and the resulting value of θ are a
consequence of the propagator expression and the chosen convention for the
sign of κ, not their reason.

The wavenumber in medium 2 is such that

k2
2 =

[
k(2)
x

]2
+
[
k(2)
z

]2
=
[
k(1)
x

]2 − κ2 (186)

It has been proven in Section “Oblique incidence of a plane wave on a
surface”, in fact, that the wavevector component parallel to the interface kx
is equal in medium 1 and medium 2: therefore, k

(2)
x = k

(1)
x .
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The propagation of the wave in medium 2 is fully characterized only if
its propagator (182) is completely defined. It includes the scalar product

k2 · r: the components of vector k2 are k
(2)
x = k2 sin(θ), k

(2)
z = k2 cos(θ). The

wavevector k2 is already known; θ is still not. An angle θ which is a solution
of the system {

k2 sin(θ) = k(2)
x = k(1)

x = k1 sin(θi)

k2 cos(θ) = k(2)
z = jκ

(187a)

(187b)

or equivalently 
sin(θ) =

n1

n2

sin(θi)

cos(θ) = j
κ

k2

(188a)

(188b)

is able to determine the value of the whole propagator, obeys Snell’s law and
defines how the wave behaves in medium 2.

The wavevector in medium 2 is such that:

k2
2 =

n2
2

n2
1

n2
1k

2
0 =

n2
2

n2
1

k2
1 (189)

Substituting in (186) and rearranging:

k2
1 sin2(θi)−

n2
2

n2
1

k2
1 = κ2

n2
2

n2
1

k2
1

[
n2

1

n2
2

sin2(θi)− 1

]
= κ2

k2
2

[
n2

1

n2
2

sin2(θi)− 1

]
= κ2 (190)

k2 is real and k2 ≥ 0 by definition; moreover, because of the assumed
hypothesis of θi exceeding the limit-angle, also the quantity between the
square brackets is real and non-negative. The square root of (190) is a real
quantity, too:

κ = ±k2

√
n2

1

n2
2

sin2(θi)− 1 (191)
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but only the positive value can be accepted, because κ has been previously
required to be real and non-negative.

Note

In order for the propagator (182) to represent an evanescent wave
which attenuates in the z direction, it has been stated that cos(θ)
must be a pure imaginary number, with non-negative imaginary
part.
As an alternative way to accomplish this, consider the following
requirement:

k(2)
z = k2 cos(θ) = −jκ (192)

Then, only the negative value in (191) must be accepted. To ease
the steps, this less convenient method will not be followed here.

Substituting in (188b) only the positive value in (191):


sin(θ) =

n1

n2

sin(θi)

cos(θ) = j

√
n2

1

n2
2

sin2(θi)− 1

(193a)

(193b)

These are the requirements that θ must meet, presented in a more suitable
form. If there are multiple values for θ that verify the system, there is no
measurable way to distinguish them: they would all produce the same waves
in the two media, thus producing the same physical effects. However, both
the conditions (193) must be satisfied, otherwise κ could assume the wrong
sign. This is the only way to fully characterize the propagator of the wave
in medium 2.

In general, a complex angle θ will be required. Therefore, let

θ = θre + jθim (194)

with θre, θim ∈ R. These are the two unknowns of this problem, represented
by the system of two equations (194).
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Remembering the sum formulas for sine and cosine, and also remembering
that sin(ix) = i sinh(x), cos(ix) = cosh(x) for x ∈ R, system (193) becomes:


sin(θre) cosh(θim) + j cos(θre) sinh(θim) =

n1

n2

sin(θi)

cos(θre) cosh(θim)− j sin(θre) sinh(θim) = j

√
n2

1

n2
2

sin2(θi)− 1

(195a)

(195b)

which is equivalent to four relations involving separately only the real and
the imaginary parts:

sin(θre) cosh(θim) =
n1

n2

sin(θi)

cos(θre) sinh(θim) = 0

cos(θre) cosh(θim) = 0

sin(θre) sinh(θim) = −

√
n2

1

n2
2

sin2(θi)− 1

(196a)

(196b)

(196c)

(196d)

By hypothesis, θim ∈ R is real and cosh(x) ≥ 1 if x ∈ R. This implies, in
(196c), that

cos(θre) = 0

θre =
π

2
+ nπ, n ∈ Z

(197a)

(197b)

This includes all the corresponding values for θi. A distinction between
two cases will be made in a while.

Condition (197) also verifies equation (196b), regardless of the value of
sinh(θim). This also implies that

sin(θre) = (−1)n (198)

and the remaining equations (196a) and (196d) in system (196) become
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
cosh(θim) = (−1)n

n1

n2

sin(θi)

sinh(θim) = −(−1)n

√
n2

1

n2
2

sin2(θi)− 1

(199a)

(199b)

In equation (199a), θim ∈ R by hypothesis; θi is a physical angle, so it is
real, too. The hyperbolic cosine of a real number θim is real and can not be
less than 1, and so must be also the Right Hand Side of the equation.

Therefore, it must be

(−1)n = sgn(θi) (200)

where sgn(x) is the sign function. Without this condition, there is no link
between condition (197b) and θi, with the risk that the Right Hand Side in
equation (199a) becomes negative, when any value of n is chosen.

Relation (200) therefore implies that (197b) actually merges the required
θ in presence of two different types of angles of incidence θi:

• only even values of n in (197b) are acceptable for angles θi ≥ 0;

• only odd values of n in (197b) are acceptable for angles θi < 0.

This separation in two sets of acceptable values for n in (197b) is deter-
mined by (199a).

Considering n = 0 in (197b), the corresponding θre is

θre =
π

2
(201)

and it is related to an angle of incidence θi ≥ 0: keeping this condition,
the previous and successive acceptable values for θre are respectively

θre =
π

2
− 2π

and

θre =
π

2
+ 2π

which are indistinguishable from (201). So, in general, with θi ≥ 0, it is:
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θre =
π

2
+ 2kπ, k ∈ Z (202)

and for any value of θ all these angles generate the same effect as (201).
Similarly, consider n = −1 in (197b): θre is

θre = −π
2

(203)

and it is related to an angle of incidence θi < 0: keeping this condition,
the previous and successive acceptable values for θre are respectively

θre =
π

2
− 3π = −π

2
− 2π

and

θre =
π

2
+ π = −π

2
+ 2π

which are indistinguishable from (203). So, in general, with θi < 0, it is:

θre = −π
2

+ 2kπ, k ∈ Z (204)

and for any value of θ all these angles generate the same effect as (203).
Summarizing, and choosing k = 0 without loss of generality:

θre = sgn(θi)
π

2
(205)

Being θre fully defined, now equations in system (199) can be rewritten
to explicitly obtain θim. This value must satisfy both the equations: note,
however, that the sign of θim can not be deduced by (199a), because cosh(θim)
is an even function of θim: it destroys information about the sign of its
argument, providing a positive value both for a positive and a negative θim.

Equation (199a) can be rewritten as:

θim = arccosh

[
(−1)n

n1

n2

sin(θi)

]
(206)

and (200), together with the initial hypothesis n1 > n2, guarantees that the
argument of arccosh is never less than 1, thus θim is real.

Considering equation (199b), the square root argument is real and non-
negative, so the square root is real. Note that arcsinh(x) is an odd function
for x ∈ R, therefore:
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• if n is even,

− (−1)n

√
n2

1

n2
2

sin2(θi)− 1 = −

√
n2

1

n2
2

sin2(θi)− 1

arcsinh

[
−(−1)n

√
n2

1

n2
2

sin2(θi)− 1

]
=

= −arcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]
=

= −(−1)narcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]
(207)

• if n is odd,

− (−1)n

√
n2

1

n2
2

sin2(θi)− 1 =

√
n2

1

n2
2

sin2(θi)− 1

arcsinh

[
−(−1)n

√
n2

1

n2
2

sin2(θi)− 1

]
=

= arcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]
=

= −(−1)narcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]
(208)

So, ∀n ∈ Z:
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arcsinh

[
−(−1)n

√
n2

1

n2
2

sin2(θi)− 1

]
= −(−1)narcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]

(209)

Equation (199b) becomes:

θim = −(−1)narcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]
(210)

and remembering (200):

θim = −sgn(θi)arcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]
(211)

This will also give the correct sign for θim. In fact, equation (199b)
involves the hyperbolic sine, whose sign is the same as its argument θim.

Combining the results (205) and (211):

θ = sgn(θi)

{
π

2
− jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]}
+ 2kπ, k ∈ Z (212)

A more compact expression for θ can be obtained directly from equation
(199a) (which must be satisfied, too, by θ), avoiding the solution of (199a).
Assume by hypothesis that

θim = −arccosh

(
n1

n2

| sin(θi)|
)

(213)

for n even and θi ≥ 0; and

θim = arccosh

(
n1

n2

| sin(θi)|
)

(214)

for n odd and θi < 0. Then, remembering (205),
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θ = sgn(θi)

[
π

2
− jarccosh

(
n1

n2

| sin(θi)|
)]

+ 2kπ, k ∈ Z (215)

Relation (212) (or its equivalent (215)) represents all the acceptable values
for the angle θ: they verify Snell’s equation in the condition (181), that is:
when θi exceeds the limit angle and sin(θ) must be real and greater than 1.
Moreover, they verify (183). Then, considering k = 0 in (212) without loss
of generality:

cos(θ) = cos

{
sgn(θi)

{
π

2
− jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]}}
=

= cos

{
π

2
− jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]}
(216)

Remembering the Right-angled triangle definitions, the fact that sin(jx) =
j sinh(x) for x ∈ R, and the definition itself of inverse hyperbolic sine:

cos(θ) = sin

{
jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]}
=

= j

√
n2

1

n2
2

sin2(θi)− 1 (217)

Of course, using (215),

cos(θ) = cos

{
sgn(θi)

[
π

2
− jarccosh

(
n1

n2

| sin(θi)|
)]}

=

= cos

[
π

2
− jarccosh

(
n1

n2

| sin(θi)|
)]

=

= sin

[
jarccosh

(
n1

n2

| sin(θi)|
)]

=

= j sinh

[
arccosh

(
n1

n2

| sin(θi)|
)]

(218)
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and, remembering the identities related to the Composition of hyperbolic
and inverse hyperbolic functions,

sinh [arccosh(x)] =
√
x2 − 1 (219)

for |x| > 1, which is verified by (181). Therefore:

cos(θ) = j

√
n2

1

n2
2

sin2(θi)− 1 (220)

which is the same result obtained in (217).
Given Snell’s law (178) under the condition (181), maybe the most straight-

forward way to obtain θ is to use the form (215), which is immediately related
to the Right Hand Side of equation (178). This can also be quickly obtained
from (212), the result of the rigorous procedure, through (219).

Summarizing, given the Right Hand Side of Snell’s law exceeding 1,

n1

n2

| sin(θi)| = α, α > 1 (221)

the corresponding complex angle θ in medium 2, when the propagator (182)
is used, is

θ = sgn(θi)
[π

2
− jarccosh(α)

]
(222)

A comparison between (217) (or (220)) and (183) immediately shows that:√
n2

1

n2
2

sin2(θi)− 1 =
κ

k2

(223)

which is, as desired, (191), when only the positive value for κ is considered.
This result will compose the propagator (185), which contains sin(θ) as well.
It is simpler to use form (215) to determine its value:

sin(θ) = sin

{
sgn(θi)

[
π

2
− jarccosh

(
n1

n2

| sin(θi)|
)]}

(224)

In the condition n1 > n2, Snell’s law acts as a magnifier for the sine of
the angle of incidence sin(θi): sin(θ) is expected to have the same sign, and
a higher value. When θi ≥ 0, again remembering the Right-angled triangle
definitions:
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sin(θ) = sin

[
π

2
− jarccosh

(
n1

n2

| sin(θi)|
)]

=

= cos

[
jarccosh

(
n1

n2

| sin(θi)|
)]

=

= cosh

[
arccosh

(
n1

n2

| sin(θi)|
)]

=

=
n1

n2

| sin(θi)| (225)

which is a positive, real value, greater than 1, according to (181).
When θi < 0:

sin(θ) = sin

{
−
[
π

2
− jarccosh

(
n1

n2

| sin(θi)|
)]}

=

= − sin

[
π

2
− jarccosh

(
n1

n2

| sin(θi)|
)]

=

= − cos

[
jarccosh

(
n1

n2

| sin(θi)|
)]

=

= − cosh

[
arccosh

(
n1

n2

| sin(θi)|
)]

=

= −n1

n2

| sin(θi)| (226)

which is a negative, real value, smaller than −1, as expected.
This value will determine k

(2)
x in the propagator (185). Referring to Figure

11, where the x positive direction is upwards:

• if θi ≥ 0, in medium 2 (225) refers to the positive x direction, where
the x-component of the wave prosecutes its propagation, as expected;

• if θi < 0, the original wave is in the II quadrant. The resulting value
(226) in medium 2 refers to the negative x direction, where the x compo-
nent of the wave propagates, again opposite with respect to the original
wave, as it must be.

Considering the case θi ≥ 0, remember (186), which relates the magnitude
of the wavenumber and its components, in medium 2:
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k2
2 =

[
k(2)
x

]2
+
[
k(2)
z

]2
(227)

This relation must hold for any angle of incidence, in any condition.
When θi ≥ 0 and θi < θ`i , both k

(2)
x and k

(2)
z are real, positive quantities.

Referring to Figure 11, when θi increases, Snell’s law (178) and relation

(227) make k
(2)
z decrease, k

(2)
x increase, and the k2 vector becomes more steep

in medium 2.
The limit condition is when θi = θ`i : consequently, θ = π/2, sin(θ) = 1

and k2 becomes vertical : k
(2)
z is reduced to 0 and k2 coincides with k

(2)
x . But

as anticipated the angle of incidence θi can be raised even more, till the
value π/2, which would cause sin(θi) = 1.

Being

k(2)
z = k2 cos(θ) = jκ (228)

with κ > 0, as requested by this procedure and as stated in (187b), relation
(227) (or (227)) becomes:

k2
2 =

[
k(2)
x

]2 − κ2 (229)

With θ`i < θi ≤ π/2, k
(2)
z has the effect to decrease the magnitude of k2.

However, k2 is a physical, immutable property of the wave in medium 2: it
must be24

k2 = ω
√
µ0ε2 = n2ω

√
µ0ε0 = n2k0 (230)

regardless of the angles of incidence and refraction. Therefore, remembering
(187a),

k(2)
x = k2 sin(θ) (231)

it is essential that sin(θ) raises above the value 1 to keep k2, even when
(229) holds, constant to its unique value (230). Also, the propagator of the
wave along x is, from (185):

24ω is the angular frequency of the original wave, µ0 is the vacuum permeability (which
is assumed to be equal to µ2) and ε2 is the permittivity of medium 2; k0 is the wavenumber
of the same wave in vacuum. These are the only physical properties that determine the
value of k2. They are only related to the material which constitutes the medium 2, and to
the original wave, not to its direction of propagation, if the medium is linear, homogeneous
and isotropic.
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ejk2 sin(θ)x (232)

A positive sine guarantees an upwards propagation, referring to Figure 11.
Along z, as already stated, the wave does no more propagate: it exponentially
decreases as e−κz.

An initial angle θi < 0 would generate in (231) a k
(2)
x with opposite sign.

Relation (229), which depends on the square of k
(2)
x , is unchanged, as well

as all the considerations on the value of k2 and the evanescence of the wave
along z. The only variation is about the propagation along x: in this second
case, it is downwards, following the negative direction of x-axis.

Values of θi exceeding π/2 or less than −π/2 are not significant, because –
considering Figure 11 – they would correspond to an initial wave in medium
2: in that case, the procedure could be repeated exchanging the values of
n1 and n2 and defining the angles in medium 2 with respect to the z-axis,
obtaining again −π/2 ≤ θi ≤ π/2.

Propagator 2

Consider the following propagator, for the sinusoidal Electro-Magnetic field
in medium 2:

e−jk2·r = e
−j
(
k
(2)
x ,0,k

(2)
z

)
·(x,y,z)

=

= e−jk2(sin(θ),0,cos(θ))·(x,y,z) =

= e−jk2 sin(θ)xe−jk2 cos(θ)z

(233)

This is the propagator chosen in (1), for the whole Chapters “Introduc-
tion” and “Dielectric slab waveguides”. The exponent sign, which is opposite
here with respect to (182), is just a convention: sometimes, the form (182)
is preferred, sometimes the form (233). Either choice can be made indiffer-
ently, but it must be made in the beginning, and it must be coherently kept
in mind during all the subsequent considerations. Please, note that also in
(233) a positive quantity k2 sin(θ)x is related to a wave traveling towards the
positive direction of the x-axis, as before. This has not changed: only the
leading sign is different.

With the propagator (233), Snell’s law is unchanged, as well as relation
(186). If an evanescent wave which attenuates in the z direction must be
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generated, cos(θ) must be a pure imaginary number, but here it must have
a non-positive imaginary part.

To accomplish this:

k(2)
z = k2 cos(θ) = −jκ (234)

cos(θ) = −j κ
k2

(235)

This way, κ must still be a real and non-negative value. The new propa-
gator (233) is:

e−jk2·r = e−jk2 sin(θ)xe−κz (236)

again, as before, the term e−κz represents an attenuation along the positive
direction of z-axis.

In this case, the angle θ must be a solution of the system
sin(θ) =

n1

n2

sin(θi)

cos(θ) = −j κ
k2

(237a)

(237b)

Note that the Right Hand Side of equation (237b) has an opposite sign
with respect to its homologous (188b). All the other considerations, however,
are exactly the same. Equations (189), (190), and even (191) are unchanged:
the solution with the positive sign for κ must be chosen here as well.

Note

In order for the propagator (233) to represent an evanescent wave
which attenuates in the z direction, it has been stated that cos(θ)
must be a pure imaginary number, with non-positive imaginary
part.
As an alternative way to accomplish this, consider the following
requirement:

k(2)
z = k2 cos(θ) = jκ (238)

Then, only the negative value in (191) must be accepted. Again,
to ease the steps, this less convenient method will not be followed
here.
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System (193) becomes


sin(θ) =

n1

n2

sin(θi)

cos(θ) = −j

√
n2

1

n2
2

sin2(θi)− 1

(239a)

(239b)

Then,


sin(θre) cosh(θim) + j cos(θre) sinh(θim) =

n1

n2

sin(θi)

cos(θre) cosh(θim)− j sin(θre) sinh(θim) = −j

√
n2

1

n2
2

sin2(θi)− 1

(240a)

(240b)

which is equivalent to four relations involving separately only the real and
the imaginary parts:

sin(θre) cosh(θim) =
n1

n2

sin(θi)

cos(θre) sinh(θim) = 0

cos(θre) cosh(θim) = 0

sin(θre) sinh(θim) =

√
n2

1

n2
2

sin2(θi)− 1

(241a)

(241b)

(241c)

(241d)

All the subsequent considerations already made for Propagator 1 about
θre, the related equations and n are the same. System (199) becomes:

cosh(θim) = (−1)n
n1

n2

sin(θi)

sinh(θim) = (−1)n

√
n2

1

n2
2

sin2(θi)− 1

(242a)

(242b)

In this case, ∀n ∈ Z:
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arcsinh

[
(−1)n

√
n2

1

n2
2

sin2(θi)− 1

]
= (−1)narcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]

(243)

Remembering (200), which did not change:

θim = sgn(θi)arcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]
(244)

The resulting angle is:

θ = sgn(θi)

{
π

2
+ jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]}
+ 2kπ, k ∈ Z (245)

or (considering a positive arccosh for θi ≥ 0 and a negative one for θi < 0,
exchanging (213) and (214))

θ = sgn(θi)

[
π

2
+ jarccosh

(
n1

n2

| sin(θi)|
)]

+ 2kπ, k ∈ Z (246)

Evaluating its cosine:
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cos(θ) = cos

{
sgn(θi)

[
π

2
+ jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]]}
=

= cos

[
π

2
+ jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]]
=

= cos

{
π

2
−

[
−jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]]}
=

= sin

[
−jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]]
=

= − sin

[
jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]]
=

= −j sinh

[
arcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]]
=

= −j

√
n2

1

n2
2

sin2(θi)− 1 (247)

This is the result in (217), with opposite sign, as expected. A pure
imaginary cosine, with non-positive imaginary part, has been obtained.

Given the Right Hand Side of Snell’s law exceeding 1, (221), the corre-
sponding complex angle θ in medium 2, when the propagator (233) is used,
is

θ = sgn(θi)
[π

2
+ jarccosh(α)

]
(248)

When θi ≥ 0, as in (225):
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sin(θ) = sin

[
π

2
+ jarccosh

(
n1

n2

| sin(θi)|
)]

=

= sin

{
π

2
−
[
−jarccosh

(
n1

n2

| sin(θi)|
)]}

=

= cos

[
−jarccosh

(
n1

n2

| sin(θi)|
)]

=

= cos

[
jarccosh

(
n1

n2

| sin(θi)|
)]

=

= cosh

[
arccosh

(
n1

n2

| sin(θi)|
)]

=

=
n1

n2

| sin(θi)| (249)

When θi < 0, as in (226):

sin(θ) = sin

{
−
[
π

2
+ jarccosh

(
n1

n2

| sin(θi)|
)]}

=

= − sin

[
π

2
+ jarccosh

(
n1

n2

| sin(θi)|
)]

=

= −n1

n2

| sin(θi)| (250)

If (228) is substituted with (234), all the subsequent considerations are
the same also in this case.

These two procedures have been a backwards analysis, whose unique pur-
pose was to guarantee that cos(θ) has a correct sign, according to the
choice of the propagator, which can be 1 or 2. The values of θ have been
chosen ad-hoc for this aim. As already mentioned, it is not Snell’s law which
determines the value of propagator, but the contrary.

Summary

For conciseness, all the angle values are considered with k = 0.

In both cases, θ generated a pure imaginary cos(θ) as desired. Two op-
posite sign sine values can be related to a fixed cosine value and they can be
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Propagator 1
ejk2·r

Propagator 2
e−jk2·r

k
(2)
z k2 cos(θ) = jκ k2 cos(θ) = −jκ

Form 1 θ = sgn(θi)

{
π

2
− jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]}
θ = sgn(θi)

{
π

2
+ jarcsinh

[√
n2

1

n2
2

sin2(θi)− 1

]}

Form 2 θ = sgn(θi)

[
π

2
− jarccosh

(
n1

n2

| sin(θi)|
)]

θ = sgn(θi)

[
π

2
+ jarccosh

(
n1

n2

| sin(θi)|
)]

cos(θ) j

√
n2

1

n2
2

sin2(θi)− 1 −j

√
n2

1

n2
2

sin2(θi)− 1

sin(θ),
θi ≥ 0

n1

n2

| sin(θi)|
n1

n2

| sin(θi)|

sin(θ),
θi < 0

−n1

n2

| sin(θi)| −n1

n2

| sin(θi)|

κ

k2

√
n2

1

n2
2

sin2(θi)− 1

√
n2

1

n2
2

sin2(θi)− 1

Table 1: Results obtained for θ using two alternative propagators.
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observed here, too. In this specific case, their magnitude is always greater
than 1 and they verify Snell’s law (178) according to the sign of θi.

Note that the same κ/k2 has been used for both propagators: the differ-
ence is the arbitrary sign chosen for the cosine.

The pure imaginary values obtained for cos(θ), listed in Table 1, can also
be deduced by the Pythagorean trigonometric identity:

sin2(θ) + cos2(θ) = 1

cos(θ) = ±
√

1− sin2(θ)

(251)

Substituting Snell’s law (178) in sin(θ) and remembering condition (181),

cos(θ) = ±

√
1− n2

1

n2
2

sin2(θi)

= ±j

√
n2

1

n2
2

sin2(θi)− 1 (252)

Observing that this square root is always a real, non-negative value, the
convention about the sign of cos(θ) in the propagator must be now considered:
only the positive result will be the accepted for propagator 1, and only the
negative result will be accepted for propagator 2. Both the signs are always
mathematically available, but one of them must always be excluded, because
it does not generate a decreasing exponential in the propagator.

These observations are needed, because the Pythagorean trigonometric
identity does not provide any information about the sign: it deals with
cos2(θ). Procedures for Propagator 1 and 2, instead, explicitly aimed at ob-
taining respectively a positive and a negative pure imaginary number since
the beginning.

However, with the considerations upon the sign conventions, (252) im-
mediately leads to the final results for cos(θ) obtained before. This further
confirms that the procedures followed to rigorously determine θ were a pure
mathematical exercise, not necessary as regards the wave propagation.

The procedures for propagator 1 and 2 had the purpose to obtain a specific
value for cos(θ). They deal with positive and negative angles of incidence θi
(provided that |θi| ≤ π/2) and their result is therefore a couple of complex
values for the angle θ.
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x

y
π

2
− β = α1

π

2
+ β = α3

−
(π

2
− β

)
= α2

−
(π

2
+ β

)
= α4

Figure 12: Two different couples of angles, respectively depicted in blue and
brown: each couple provides the same cosine value.

Their behaviour is similar to real angles. When a cosine positive value
cos(α) > 0 is specified and the acceptable α are looked for, there are two
angles with opposite sine which provide the same cos(α). Referring to Figure
12, they are α1 and α2:

cos
(π

2
− β

)
= cos

[
−
(π

2
− β

)]
(the actual values are α1 + 2kπ, α2 + 2kπ, k ∈ Z, here k = 0 is chosen: there
is no difference with any other value of k).

These two angles have opposite signs, and opposite sine values. They
have the same form as the resulting θ in (212) or (215) for propagator 1.

The difference between θ and the real angles α1,2 are the extreme and
unusual values involved: cos(θ) pure imaginary, with positive imaginary part,
and the corresponding | sin(θ)| > 1.

This has already been shown in Section “Real values greater than unity”
of Hyperbolic functions and complex angles, with pure imaginary β, to obtain
(as well as here) pure imaginary cosine values.

Also when a negative value cos(θ) is specified, two angles with opposite
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sine are found: α3 and α4.

cos
(π

2
+ β

)
= cos

[
−
(π

2
+ β

)]
They provide the same desired result cos(θ) and their sine values are

opposite, as well as their signs.

All the four angles can be obtained from the same β value, as for the
complex θ.

Conversely, Figure 12 also shows that when a single value of sine is
needed, two different angles with opposite cosines are available: α1 and α3

in the picture

sin
(π

2
− β

)
= sin

(π
2

+ β
)

for a positive sine. This has been already mentioned to obtain positive values
greater than 1 for sine (with pure imaginary β) in Section “Real values greater
than unity” of Hyperbolic functions and complex angles.

α2 and α4 generate a negative sine value:

sin
[
−
(π

2
− β

)]
= sin

[
−
(π

2
+ β

)]
Conclusions and sign conventions

The choice between propagator (182) and (233) is arbitrary. Then, when
dealing with evanescent waves, two results are always mathematically avail-
able for cos(θ) and therefore for the pure imaginary kx2 , the ones shown in
(252). Also the Helmholtz equation in (76) coherently allows both signs25.
According to the propagator, only one of them will generate an exponentially
decreasing wave, while the other one would cause an exponentially increasing
wave, which is physically unacceptable. These considerations about waves
do not impose which result must be chosen: they impose that one result
must be chosen. This choice must be made accordingly to the choice of
the propagator, so that it represents a decreasing wave. This is sufficient
to fully characterize the wave propagation, through (182) or (233), avoiding
the whole procedures shown in Sections “Propagator 1” and “Propagator 1”

25Either way, k2x2
is a negative quantity.
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(they are still useful, however, if a thorough and general expression for the
angle is needed).

The dielectric interface structure between the two media does not deter-
mine the sign of cos(θ): the (arbitrarily chosen) propagator does, instead.

Note that both Figures 1 and 11 use the same system of coordinates, and
the surface separating the two media has the same position (plane z = 0).
Computations after Figure 1 immediately use the propagator (1) (the same
as in (233)); after Figure 11, computations for both the propagators (182)
and (233) are presented.

k1k
(1)
x

k
(1)
z

x1

x2

k2k
(2)
x

k
(2)
z

n2

n1

zy

x

Figure 13: Wavevector and angle of incidence.

Angles are always considered between the wavevector and the normal
vector to the surface between the two media. In Chapter “Dielectric slab
waveguides”, this surface has a different placement: as in Figure 13, it is the
plane x = 0. All the considerations are the same, but with exchanged roles
for kx and kz.

Snell’s law: an alternative formulation

Consider equation (178), which represents Snell’s law:

sin(θ) =
n1

n2

sin(θi) (253)
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θ

θ′

θi

θ′i

n1 n2

Figure 14: Snell’s law and complementary angles. The separation surface
between the two media is depicted in section as the vertical black line; the
normal direction to this surface is the horizontal red line.
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Refer to Figure 14. In the plane of incidence, angles θi and θ are –
following the convention – between the respective wavevector directions and
the normal direction to the surface separating the two media. These same
angles can be expressed as

θi =
π

2
− θ′i

θ =
π

2
− θ′

(254a)

(254b)

being θ′i and θ′ their complementary angles.
Therefore, Snell’s law (178) can be rewritten as

sin
(π

2
− θ′

)
=
n1

n2

sin
(π

2
− θ′i

)
(255)

Note that, due to (254), no change has been made with respect to (178).
Remembering the Right-angled triangle definitions, (255) is equivalent to

cos(θ′) =
n1

n2

cos(θ′i) (256)

which is an alternative and equivalent formulation of Snell’s law. In the
plane of incidence, it involves the angles between the wavevector directions
and the surface26 separating the two media, not its normal direction. Only
by convention, the form (178) is more common.

26Whose section is the vertical line in Figure 14.
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